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Exploration of crystal chemical space using
text-guided generative artificial intelligence

Hyunsoo Park , Anthony Onwuli & Aron Walsh

The vastness of chemical space presents a long-standing challenge for the
exploration of new compounds with pre-determined properties. In materials
science, crystal structure prediction has become a mature tool for mapping
from composition to structure based on global optimisation techniques.
Generative artificial intelligence now offers the means to efficiently navigate
larger regions of crystal chemical space informed by structure-property
datasets of materials. Here, we introduce a model, named Chemeleon,
designed to generate chemical compositions and crystal structures by learning
from both textual descriptions and three-dimensional structural data. The
model employs denoising diffusion techniques for compound generation
using textual inputs aligned with structural data via cross-modal contrastive
learning. The potential of this approach is demonstrated formulti-component
compoundgeneration, including the Zn-Ti-O ternary space, and the prediction
of stable phases in the Li-P-S-Cl quaternary space of relevance to solid-state
batteries.

The true power of artificial intelligence (AI) for chemical research is in
addressing challenges that are difficult or impossible to solve using
conventional methods. Already, AI techniques are being tailored to
identify patterns in chemical datasets1, predict reaction outcomes2,
and accelerate discovery and optimisation cycles3. The efficient navi-
gationof chemical space, exploring or targeting relevant regions in the
high-dimensional composition-structure-property landscape, remains
one of the longstanding goals in computational chemistry.

Computational materials exploration has expanded to incorpo-
rate both in-depth studies of individual systems4 and high-throughput
screening5 approaches, each playing a complementary role in advan-
cing the field. While high-throughput methods have significantly
broadened the scope of materials discovery6, in-depth studies remain
essential for uncovering fundamental mechanisms and validating
computational predictions. However, as these search spaces grow, so
does the complexity of identifying regions of interest where chemical
compositions, crystal structures, and physical properties align to cre-
ate materials with desirable characteristics.

Navigating the vast pool of possible chemical compositions and
molecular/crystal structures presents a significant challenge, akin to
exploring a multidimensional surface, one step at a time7. While
databases of known structures and properties provide a valuable

foundation, the search space is too expansive for exhaustive explora-
tion using traditionalmethods alone. Chemical heuristics, grounded in
empirical knowledge and informed by data, can play a crucial role in
guiding this search to relevant regions, and in defining safe pathways
to follow8. Accelerated random structure searching9 and approximate
probe structures10 have also been used to identify fertile regions of
chemical space

Generative AI now offers a complementary solution to these
challenges, providing tools for data-driven optimisation and
discovery11. By learning from both existing datasets and theoretical
models, generative AI can be used to explore uncharted regions by
drawing from the distributions of known materials to propose new
candidate compoundswith targetedproperties. Earlymodelsbasedon
generative adversarial networks (e.g., CrystalGAN12), and variational
autoencoders (e.g., CDVAE13), are now being superseded by generative
diffusion models (e.g., DiffCSP14 and MatterGen15). These can be used
as a tool for crystal structure prediction (mapping from chemical
formula as input to candidate crystal structures as output) or the
compound generation can be conditioned to achieve target property
values in an inverse materials design workflow (mapping from prop-
erty as input to candidate chemical formulas and crystal structures as
output).
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In this work, we introduce a generative materials model, Cheme-
leon, based on denoising diffusion that learns from textual descrip-
tions alongside three-dimensional structural data to sample chemical
compositions and crystal structures. By incorporating textual
descriptions into the training process, the model is better informed of
the relationship between composition and structure. This approach is
achieved by introducing cross-modal contrastive learning where
embedding vectors from a text encoder are aligned with those from a
crystal GNNs. The flexible nature of the model architecture can sup-
port the future integration ofmore sophisticated text descriptions and
physical properties of materials.

Results
To bridge the gap between textual descriptions and crystal structure
generation, we have formulated a generative model trained using
information from both types of data, as illustrated in Fig. 1a. The first
component is a text encoder pre-trained via contrastive learning to
align text embedding vectors from a text encoder with graph
embedding vectors from equivariant graph neural networks (GNNs).
The secondcomponent is a classifier-free guidancedenoisingdiffusion
model for composition and structure generation, which is iteratively

trained to predict the temporal evolution of noise by incorporating the
text embeddings obtained from the pre-trained text encoder.

Contrastive learning with crystal structures: Crystal CLIP
Creating numerical representations of text (i.e., text embeddings) that
capture information about crystal structures is essential for generative
models based on textual inputs.Mat2Vec16 is a pioneering approach to
construct text embedding in the domain of materials science, by
training a Word2Vec17 model on an extensive corpus of materials sci-
ence literature. This method produces dense embedding vectors that
facilitate the understanding of word meanings by situating similar
words close to each other. Further enhancement in text embedding
quality has been achieved through transformer-based methods18 such
as bidirectional encoder representations from transformers (BERT)19

which capture the contextual relationships within sentences by pre-
training on tasks such as masked language modelling. Several Trans-
former encoder models including SciBERT20, MatSciBERT21, and
MatBERT22, have been developed to train BERT with an enormous
corpus of materials science literature. Notably, MatTPUSciBERT23,
which is built on the SciBERT and has been pre-trained with approxi-
mately 700,000 articles in materials science, has demonstrated high

Fig. 1 | Illustration of the cross-modal contrastive learning and generative
diffusion approach implemented in Chemeleon. a The text-guided denoising
diffusion model comprises two key components: (1) Crystal CLIP (Contrastive
Language-Image Pretraining), a text encoder pre-trained through contrastive
learning to align text embeddings with graph neural network (GNN) embeddings
derived from crystal structures, and (2) a classifier-free diffusion model, which
iteratively predicts noise at each time step while integrating text embeddings from
the pre-trained Crystal CLIP. In this framework, q denotes the forward diffusion

process (posterior) progressively adding noise to the crystal structures, while pθ
represents the reverse diffusion process (learned approximation of the posterior)
aimed at generating crystal structures. Ct refers to crystal structures at time step, t.
b Illustration of the contrastive learning objective in Crystal CLIP, where positive
pairs, which consist of text and graph embeddings from the same crystal struc-
tures, are brought closer together in the latent space, while negative pairs are
pushed further apart.
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performance in various tasks. However, such models may still exhibit
limitations in their capacity to comprehend structure information in
three-dimensional space and serve as effective text encoders for
crystal structure generation.

To bridge the gap between text embeddings and accurate crystal
structure representation, we have developed a cross-modal con-
trastive learning framework24, named Crystal CLIP. This framework
facilitates aligning text embeddings from text encoders with embed-
dings from other modalities. Demonstrations by various generative
models of text to other modality, such as Imagen25 and Dall-e26, which
incorporate text encoders pre-trained through contrastive learning
with image embedding vectors, have shown enhanced performance

compared to models trained solely on textual data. For the specific
task of capturing crystal structure information, Crystal CLIP is based
on a Transformer-based encoder model that is trained through con-
trastive learning to align text embedding vectors with graph embed-
dings derived from GNNs.

Figure 2 illustrates the results of the contrastive learningofCrystal
CLIP, which is based on MatTPUSciBERT (hereinafter referred to as
Baseline BERT). The primary goal of this contrastive learning is to
enhance the alignment between text and graph embeddings in the
latent space. Specifically, the training objective is to maximize the
cosine similarity for positive pairs, which consist of graph embeddings
fromGNNs and their corresponding textual descriptions, both derived

Fig. 2 | Contrastive learning of text and crystal graphs. a Heatmaps of cosine
similarity between text embeddings from text encoders and graph embeddings
from graph neural networks (GNNs). The Baseline BERT (Bidirectional Encoder
Representations from Transformers) model refers to MatSciTPUBERT23. Crystal
CLIP (Contrastive Language-Image Pretraining) denotes a text encoder trained

using contrastive learning to align with graph embeddings. Values are plotted for
128 randomly sampled unit cells, forming a 128 × 128 matrix. Diagonal elements
represent positive pairs, while off-diagonal elements represent negative pairs. b A
t-SNE (t-distributed stochastic neighbor) visualization of element embeddings
generated by the text encoders, using element symbols as the textual input.
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from the same crystal structure. Simultaneously, the process mini-
mizes the cosine similarity for negative pairs, which are not derived
from the same crystal structure. This methodology ensures that posi-
tive pairs arepositioned closely, andnegative pairs are placeddistantly
in the embedding space, as illustrated in Fig. 1b.

Figure 2a presents heatmaps of cosine similarities for 128 ran-
domly selected pairs of crystal structures and their textual descrip-
tions which are reduced compositions of the crystal structures. The
results for different types of textual descriptions are provided in
Supplementary Informations S1 and 2. Within the heatmap, the diag-
onal elements, which represent positive pairs, show high cosine simi-
larity, approaching 1. In contrast, the off-diagonal elements,
representing negative pairs, display significantly lower cosine similar-
ity, approaching −1. On the other hand, the Baseline BERT model fails
to distinguish between positive and negative pairs, highlighting the
utility of contrastive learning in Crystal CLIP.

To evaluate the effectiveness of contrastive learning, element
embedding vectors generated by the text encoders, when the text
input is an element symbol, are visualized using t-SNE27 for dimen-
sionality reduction, as illustrated in Fig. 2b. These embedding vectors
are obtained from the class token, the initial token in the BERT archi-
tecture. The element embeddings from Crystal CLIP reveal distinct
clustering of elements into groups such as transitionmetals, halogens,
and noble gases. In contrast, the Baseline BERTmodel does not display
such distinct clustering.

Generative diffusion model
The second stage of our framework is a diffusionmodel for generating
compounds, which are represented by a crystallographic unit cell
consisting of lattice vectors, atom types, and atom coordinates. The
diffusion model operates with forward and backward processes28. The
forward process involves gradually adding random noise (typically
Gaussian noise) to the individual representations of crystal structures
over a series of steps, transitioning the crystal structure (C0) into a
completely random state (CT). The denoisingmodel, which is based on
an equivariant GNN ensuring E(3) symmetry, predicts the noise that
was added at each step in the forward process and iteratively removes
it, thereby reconstructing theoriginal data frompure noise. Thedetails
of the diffusion model implementation are provided in the Methods
section.

Beyond stochastically generating compounds from the original
data distribution, Chemeleon is capable of guiding generation with
textual descriptions toward specific types of composition or structure.
Initially, guiding diffusion models required additional models along-
side the diffusion model to predict specific conditional properties
from the random noise at each step29. However, classifier-free
guidance30 eliminate the need for additional networks by explicitly
incorporating the label (or conditioning data) into the input of the
denoising model during both training and inference phases. The
classifier-free guidance is adopted for Chemeleon where the text

embedding vectors from Crystal CLIP are used as conditioning data,
effectively guiding the text-to-crystal structure generation process.

Evaluation of structure metrics
To explore a broad and diverse chemical space, our models were
trained with inorganic crystal structures from the Materials Project31

containing 40 or fewer atoms in the primitive unit cell. This approach
allows Chemeleon to capture diverse material properties and struc-
tural variations, rather than training with only simple unit cells.
Moreover, the test set was split chronologically to assess whether the
models could generate (unseen) future structures. Detailed informa-
tion about the dataset is provided in the Methods section and a
comparison between chronological and random splits is discussed in
Supplementary Note S1.

The textual descriptions of the crystal structures involve both the
chemical composition and crystal system. Composition defines the
element identity and ratio, fundamental factors that influence the local
coordination preferences and long-range connectivity. The crystal
system defines the shape (symmetry) of the unit cell, treated as a case
property in this study. Three types of textual descriptions are used, as
summarized in Table 1, each with an example. For the composition
model, the textual description consists solely of the reduced compo-
sition in alphabetical order. The formatted text form represents
structured data format by incorporating both the composition and an
additional property, the crystal system, separated by a comma. The
general text form allows for a more diverse range of textual descrip-
tions, generated by large language models (LLMs). The details of
generating textual descriptions and examples of general text are
provided in the Method section and Supplementary Fig. S3.

Table 1 contains four evaluation metrics on structural metrics for
diffusion models trained with the Baseline BERT and Crystal CLIP as
text encoders. The test set comprises 708 structures that have been
registered since August 2018, ensuring no overlap with the training or
validation sets. For each test entry, themodels generated 20 structures
based on the number of atoms and text prompts derived from the test
set structures which are considered the ground truth structures as the
dataset possess feasible energy above the convex hull.

The Validity metric measures the proportion of structurally valid
samples, where validity is defined by the absence of atomic overlap
and cell lengths shorter than 60Å. The absence of atomic overlap is
evaluated by measuring the minimum pairwise interatomic distance.
Structures with a minimum pairwise distance greater than 0.5 Å are
considered free of atomic overlap. Bothmodels achieve a near-perfect
validity rate of 98–99%, indicating their robustness in generating
structurally feasible outputs.

The Uniqueness metric evaluates the diversity of the generated
structures, specifically the proportion of unique structures among the
20 samples for each text prompt based on the StructureMatcher class
in Pymatgen32 library. The Baseline BERT model exhibits a slightly
higher unique score compared to Crystal CLIP, likely due to Crystal
CLIP’s tendency to generate structures with compositions that closely

Table 1 | Model evaluation on structural metrics

Model type Textual description style Text
encoder

Validity Uniqueness Structure
matching

Metastability

Composition “Li1 Mn1 O4” Baseline BERT 0.99 0.94 0.13 0.22

Crystal CLIP 0.99 0.90 0.20 0.25

Formatted text “Composition: Li Mn O4, crystal system:
orthorhombic”

Baseline BERT 0.99 0.97 0.09 0.21

Crystal CLIP 0.98 0.92 0.17 0.19

General text “Crystal structure of
LiMnO4 with
orthorhombic symmetry”

Baseline BERT 0.99 0.97 0.06 0.23

Crystal CLIP 0.99 0.90 0.20 0.25

Evaluation of the crystal structures generated byChemeleon in terms of validity (structural parameters), uniqueness (between generated structures), structurematching (ground truth present), and
metastability (energy threshold) across a batch of 20 samples.
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match the given text prompts. Despite this, both models maintain a
high uniqueness rate, exceeding 90%, which demonstrates their cap-
ability to produce varied outputs.

The Structure Matching metric assesses whether the 20 sampled
structures include the ground truth structure from the test set, which
was used to generate the corresponding textual description. Given
that the test set consists of future data and including more than 20
atoms, thismetric is particularly challenging. Nonetheless, CrystalCLIP
cangenerate 20%of unseen ground truth structureswithin the text set
even when the type of textual description is general text. Notably, it
significantly outperforms Baseline BERT, indicating its superior ability
to replicate the precise structure as described by the text.

The Metastability metric measures the proportion of 20 sampled
structures have an energy within 0.1 eV/atom of the ground truth
structure’s energy, based on MACE-MP33 which is a pre-trained
machine learning force-field from the energies and trajectories of
geometry optimisation inMaterials Project. This counting occurs only
when the sampled structures share the same composition as the
ground truth structures, and it is done without performing geometric
optimization to allow for more efficient evaluation. This metric indi-
cates how many of the generated structures are energetically close to
the ground truth, suggesting their potential stability before further
optimization. Both text encoders, Baseline BERT and Crystal CLIP,
perform similarly in this regard, and about 19–25% of the sampled
structures exhibit energetically favourable configurations without
further optimization, demonstrating the models’ effectiveness in
generating stable structures directly from the initial sampling.

Although our model is not solely focused on the CSP task but
rather emphasizes alignment for text-guided generation, we also
trained it on the MP-20 dataset to facilitate a direct comparison with
existing CSPmodels (see Supplementary Table S1). Unlikemodels only
for the CSP task, which focus solely on optimizing atomic coordinates
and lattice matrices, Chemeleon incorporates composition as a text-
based input. As a result, it achieves a 67.52% composition matching
rate, a metric that DiffCSP and FlowMM34 do not account for. For
structure match rate, our evaluation considers only cases where
composition is correctly predicted. This stricter criterion naturally
results in a lower structure match rate for Chemeleon compared to
DiffCSP and FlowMM, as these models do not impose composition
constraints. In terms of root mean square error, Chemeleon under-
performs DiffCSP and exhibits similar performance with FlowMM.
These results demonstrate Chemeleon’s unique strength in handling
composition-based predictions while maintaining competitive struc-
tural accuracy. However, there is still room for improvement in CSP-
specific performance, particularly in enhancing structure generation
accuracy to match or exceed state-of-the-art CSP models.

Evaluation of text-guided generation
Our core objective is to generate compounds based on textual
descriptions as conditioning data. The models are assessed with two
metrics in terms of conditional generation, which are composition and
crystal system matching ratio. These metrics measure the proportion
of the 20 sampled structures with the composition or crystal system
for the ground truth structure in the test set that was used to generate
the textual descriptions. Their detailed scores are provided in Sup-
plementary Table S2.

Figure 3a shows the accumulated compositionmatching ratio as a
function of the number of atoms in unit-cell for the models trained
with Baseline BERT and Crystal CLIP as text encoders when the input
textual description is in general text form. The Crystal CLIP model
significantly outperforms the BERT model across a range of atom
number, demonstrating a 3 times higher composition matching ratio.
This result highlights the effectiveness of the contrastive learning
approach in Crystal CLIP, where text embedding vectors are aligned
with graph embeddings that capture the spatial configuration of three-

dimensional structures using equivariant GNNs. However, the
composition-matching ratio tends to decline as the number of atoms
in the structure increases. It is observed that most mismatches in
composition for Crystal CLIP models involve differences in stoichio-
metric coefficient, rather than in atom types. For instance, when the
text input specifies LiO3 with 36 atoms, the model might generate a
structure with composition Li8O26 instead of the expected Li9O27. This
is due to the nature of the stochastic processes in the generative
models. While these models improve the overall distribution under
guidance, they cannot always produce the exact conditioning data,
particularly when denoising atom types which are categorical
variables.

This tendency is further illustrated in the t-SNE plot of composi-
tional embeddings for the training, test, and generated data, as shown
in Fig. 3c. The generated data represents sampled structures by Che-
meleon when the textual description is general text. These composi-
tional embeddings were generated by averaging element embeddings
using Magpie35, which provides a 22-dimensional representation for
each element, through the ElementEmbedding36 package. Overall, the
sampled structures generated by Crystal CLIP mostly exhibit overlap
with the structures in the test set, denoted by starmarkers, suggesting
that the models effectively produce consistent compositions. Data
points positioned at a significant distance from the test set are high-
lighted with red edges, indicating that the generated structures have
deviated compositions relative to the test set, potentially consisting of
different atom types. Notably, a greater number of data points from
theBaseline BERTmodel than fromCrystal CLIP fail to overlapwith the
test set. This suggests that while the Crystal CLIP model maintains a
high degree of compositional fidelity, BERT struggles to generate
structures that align with the target compositions.

Figure 3d displays the t-SNE plot of the CrystalNN fingerprint37 for
the same structures as in Fig. 3c, which provides a visualization of the
structural similarities between the generated and test set structures.
The CrystalNN fingerprint, which encodes the local chemical envir-
onment of each atom in the crystal structure, is used here to assess
how closely the generated structures resemble the ground truth
structures at an atomic level. As in the previous plot, data points
representing structures that deviate significantly from the test set are
highlighted with red edges. BERT demonstrates more deviation from
the test structures, indicating that Crystal CLIP is more effective in
generating structures that closely match the atomic environments of
the ground truth. Several points in the test set, highlighted in Sup-
plementary Fig. S4, are positioned far from the sampled structures.
Theseoutliers correspond to structureswith complex stoichiometries,
such as Er₂Co₁₂Ni, Lu₂Co₁₇, and Er₃Ge₁₃Rh₄, whichpose challenges for
generation.

Figure 3b presents the composition and crystal system matching
ratios of Crystal CLIP models for various types of textual descriptions,
including models without textual guidance, specifically for structures
containing fewer than 20 atoms. General text descriptions, which are
generated by LLMs, exhibit greater flexibility and diversity in linguistic
expression. In contrast, composition and formatted text descriptions
follow a strict, standardized format with elements listed alphabetically
(e.g., Li(MnO₂)₄ represented as Li₁ Mn₄ O₈. Despite the increased
complexity and variability of the general text inputs, Crystal CLIP
demonstrates robust performance, achieving higher composition and
crystal system matching ratios compared to BERT. Notably, the per-
formance gap is most pronounced when using general text descrip-
tions showing the capability of contrastive learning to handle less
structured, more naturalistic language inputs.

The strong performance of the general textmodel in composition
and crystal system matching, compared to composition-based and
fixed-format inputs, highlights the effectiveness of our approach.
Unlike traditional classifier-based or explicitly constrained methods,
our methodology enables scalable and flexible material generation,
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accommodating a broad spectrum of property descriptions. This
adaptability suggests a promising avenue for integrating extensive
scientific knowledge sources, such as literature and databases, into a
unified framework for text-driven material discovery.

Applications of Chemeleon
To showcase the capabilities of the developed generative AImodel, we
target several distinct chemical spaces. The first Ti-Zn-O system has
been extensively explored and contains many known materials, such
as TiO2 and ZnO. The second system is Li-P-S-Cl, representing a com-
plex quaternary space that is sparsely populated, with a limited num-
ber of known materials despite its technological relevance in
electrochemical energy storage. The challenge of multi-component
chemical spaces, like ternary or quaternary systems, lies in their vast
size. Evenwith amaximumstoichiometric coefficient of 6, for instance,

the Li-P-S-Cl system has 2400 possible combinations, calculated as
74 − 1. Each element can have a stoichiometry ranging from 0 to 6 and
excluding those where coefficients are zero. This vastness makes
comprehensive exploration time-consuming and computationally
demanding.

To address this issue, we introduce a tailored workflow integrat-
ing multiple computational tools: SMACT38 (chemical filter), Cheme-
leon (sampling), MACE-MP (preliminary geometry optimization), and
Atomate239 (automated density functional theory calculations). At
first, the huge search space can be refined to feasible compositions by
chemical rules based on electronegativity balance and charge neu-
trality. In the case of the Ti-Zn-O system, only 179 unique compositions
were allowed out of 728 possible combinations, assuming amaximum
stoichiometric coefficient of 8. For Li-P-S-Cl, this approach significantly
narrowed down the possibilities to 781 unique composition + +ns. The

t-SNE of Composition Embeddings t-SNE of CrystalNN Fingerprint Embeddingsc d

Train
Test
Crystal CLIP
Baseline BERT
Non-overlapping
Non-overlapping
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Crystal CLIP
Baseline BERT
Non-overlapping
Non-overlapping

M
at

ch
in

g 
ra

tio

UnguidedComposition
Formatted textGeneral text
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a b

Fig. 3 | Text-guided compound generation. a A box plot of the accumulated
composition-matching ratio as a function of the number of atoms. The sample sizes
(n) are: n = 61 for structures with fewer than 10 atoms, n = 300 for structures with
fewer than 20 atoms, n = 340 for structures with fewer than 30 atoms, and n = 707
for structures with fewer than 40 atoms. Boxes span the 25th to 75th percentiles
(the interquartile range), horizontal lines mark the median, whiskers extend to
1.5 × the interquartile range. b A box plot of composition and crystal system
matching ratio of the Crystal CLIP model based on different prompt types for
structures containing fewer than 20 atoms, with a total of 300 generated

structures. The box plot follows the same statistical format and visualization
parameters as used in (a). c A t-SNE plot of compositional embeddings generated
by Magpie for train, test, and generated structures from the Baseline BERT and
Crystal CLIPmodels, using general text descriptions. The generated structures that
differ from the test set are highlighted with red edges (non-overlapping). d A t-SNE
plot of structural embeddings generated by CrystalNN Fingerprint, showing train,
test, and generated structures using general text descriptions. The source data are
provided as a Source Data file 1.
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regions of composition allowed by these chemical filters for both the
Ti-Zn-O and Li-P-S-Cl spaces are shown in Fig. 4a and Supplementary
Fig. S5, respectively.

Subsequently, Chemeleon sampled structures only for composi-
tions that passed the chemical filters, with additional details provided
in Supplementary Note S2.

S1. These generated structures were evaluated by calculating the
energy above the thermodynamic convex hull relative to phase dia-
gram entries in the Materials Project database. Metastable structures
were defined as those with an energy is lower than 0.15 eV/atom of
energy above the convex hull. The energy threshold is widely used in

high-throughput computational screening for practical purpose40

identifying materials with potential synthesizability to account for
potential non-equilibrium effects, such as temperature and pressure,
by bypassing thermodynamic constraints.

Given the large number of generated structures MACE-MP, was
employed for preliminary geometry optimization and energy calcula-
tion, identifying potential metastable structures. Finally, the energy
calculations for the pre-screened structures were performed using
density functional theory (DFT) following geometry optimization. This
workflow facilitated the construction of phase diagrams and the

Fig. 4 | Ternary Zn-Ti-O space. a Phase diagram with compositions filtered by
chemical rules. b A combined phase diagram of known and generated compounds
by Chemeleon for the Ti-Zn-O system. Stablematerials lie on the convex hull, while
metastable materials have energies above the convex hull by less than 0.15 eV/
atom. c Five representative generated structures from the combined phase dia-
gram for Ti-Zn-O system. d A t-SNE (t-distributed stochastic neighbor) plot of
CrystalNN fingerprint embeddings for TiO₂polymorphs, including both knownand

generated structures. It highlights three known TiO₂ polymorphs that were not
generated and three generated polymorphs with distinct space groups. The gray
dots represent known TiO₂ structures derived from theMaterials Project database.
The symbols correspond to different crystal systems in generated structures as
follows: • (Triclinic), X (Monoclinic), ■ (Tetragonal), + (Orthorhombic), ♦ (Trigo-
nal),✦ (Cubic), and▲ (Hexagonal). The source data are provided as a Source Data
File 1.
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identification of potential novel compounds. The details of workflows
for each system are summarized in Supplementary Fig. S6.

Polymorphs of TiO2

We first explored the capability to generate specific compositions,
focusing on the polymorphs of TiO₂. While we do not expect to dis-
cover any new stable structures, it is an interesting phase space to
explore with a generative model owing to its complexity and impor-
tance in solid-state chemistry. The Materials Project database lists 44
TiO₂ crystal structures, involving several extensively studied poly-
morphs. It includes the commonly found rutile, which features an
octahedral geometry around each titanium ion in a tetragonal
symmetry41. Anatase, another well-known tetragonal polymorph close
in energy to rutile, but with more distorted octahedra. TiO₂ can also
exist in other forms, such as brookite and TiO₂-B, and these poly-
morphs can be accessed depending on processing conditions such as
temperature, pressure, and chemical environment42. This structural
flexibility makes TiO₂ highly versatile for applications43.

Using Chemeleon, 549 TiO₂ potential polymorphs, distinct from
the known structures were sampled with compositions ranging in
multiplicity from 1 to 13. Following preliminary geometry optimization
using MACE-MP, 539 of these structures successfully converged. To
compare the generated polymorphs with the known ones, we con-
structed a t-SNE plot based on their structural embeddings derived
from CrystalNN fingerprints, as shown in Fig. 4d. The names of entries
for all known materials are displayed in Supplementary Fig. S7. It is
worth highlighting that the generated polymorphs, depicted as light
grey points on the plot, not only encompass most known polymorphs
but also occupy previously unexplored regions of the structural space.

Certain known polymorphs presented in Fig. 4d, such as structure
I (mp-1102591), II (mp-1079207), and III (mp-655656) are positioned in
regions not covered by the sampled structures. These were absent
from the training set due to their high energy above the convex hull; a
filter of 0.25 eV/atom was used to favour the generation of energeti-
cally favourable configurations. Indeed, most of the structures gener-
ated by Chemeleon exhibit energies below 0.15 eV/atom above the
convex hull, according to MACE-MP as shown in Supplementary
Fig. S8. The entry mp-1102591 consists of densely packed TiO₂ octa-
hedra in a cubic symmetry, while mp-1079207 features sevenfold
coordinated Ti with hexagonal symmetry44. Lastly,mp-655656 features
a square pyramidal coordination of Ti, typically seen in TiO. However,
the layers in this structure are spaced far apart, making it difficult for
the generative model to sample.

We identified 122 uniquemetastable TiO₂ structures based on the
final DFT calculations. Among these, 50 structures exhibit space
groups that have not been observed in previously known TiO₂ poly-
morphs, as presented in Supplementary Fig. S9. They differ in terms of
local environment, connectivity and/or crystal symmetry. For instance,
Structure IV, with space group R-3 in the trigonal system, features a
unit cell comprising four octahedra and two square pyramidal units,
showcasing a complex coordination environment distinct from typical
TiO₂polymorphs. StructureV, with theR3 space group, presents a rare
arrangement of both tetrahedral and trigonal bipyramidal coordina-
tion polyhedra, highlighting the model’s capability to predict uncom-
mon structural motifs. Structure VI is an example of a configuration in
the tetragonal system with space group P-4, formed through a unique
three-dimensional arrangement of octahedra. Notably, the generative
model can uncover plausible new structural configurations in a well-
known binary space.

Extension to Ti-Zn-O
The Ti-Zn-O includes the binary oxides and various zinc titanates such
as Zn2TiO4 and ZnTiO3 with wide-ranging properties45,46. Using the
developed workflow, the Ti-Zn-O phase diagram in Fig. 4b was con-
structed by integrating known materials data from the Materials

Projectwith structures generated byChemeleon. TheMaterials Project
lists 18 stable and 108 metastable structures for this system. Through
our workflow, we predicted one stable structure, lying below the
energy convex hull, and 58 metastable structures from the generated
candidates, where the generated structures are listed in Supplemen-
tary Fig. S10.

Figure 4c presents five representative structures generated by
Chemeleon. A simple yet effective method for exploring new com-
pounds is through atomic substitution into known prototypes. This
strategy is apparent in the metastable structures generated especially
for Ti-Zn structures, where several can be viewed as atomic substitu-
tions within known metal structures. The only structure identified
below the energy convex hull, Ti₃Zn₂, with space group I4/mmm,
features alternating layers of Ti and Zn stacked along the c axis. This is
an ordered intermetallic structure, which will be in competition with
disordered alloys that may form, but are not considered in the stan-
dard thermodynamic convex hull analysis. Several other metastable
structures were formed by atomic or polyhedral unit substitution. For
instance, TiZn₇O₈ (space group Cm) is formed with a Zn site in a tet-
rahedral coordination geometry that is replaced by Ti. While Ti typi-
cally prefers octahedral environments in oxides, it can also adopt a
tetrahedral geometry, especially in high-pressure scenarios. In the case
of TiZn₆O₈, the structure appears not to be formed simply through
direct atomic substitution but through a unique three-dimensional
arrangement incorporating tetrahedral Ti motifs.

The compound TiZnO₃, metastable with respect to dis-
proportionation into ZnO and TiO2, combines five-fold coordinated Ti
and tetrahedral Zn. This may reflect the training data where Ti can
adopt a wide range of coordination environments, while Zn pre-
dominantly maintains a + 2 oxidation state with a tetrahedral
coordination44. Structures such as this highlight the potential for
generative models to sample unconventional bonding arrangements.
Indeed, one sampled metastable structure for TiZnO, which may be
challenging for an inorganic chemist to anticipate, separates into
alternating layers of TiO andmetallic Zn.While the local environments
of conventional oxidation states should be well described by our
model, we note the potential limitations of the Materials Project
training data for highly correlated systems such as those containing
reduced forms of Ti.

Quaternary Li-P-S-Cl system
In the transition from liquid electrolyte to solid-state batteries, the
search for solid electrolytes that satisfy all necessary design criteria is
ongoing. Argyrodite-type crystals such as Li6PS5Cl have emerged as
some of the highest-performing systems47 and the electrode-
electrolyte interphase that forms upon Li cycling is crucial for deter-
mining performance48. At the atomistic scale, this is a challenging
problem with a large phase space where phases can form and decay
with various stoichiometries under different conditions. Identifying
various by-products that form poses a challenge due to the mixture of
multiple phases in lo w concentrations49. Understanding such phase
behaviour is essential for optimizing battery performance.

As a test for our method, we have tackled the Li-P-S-Cl space
where only 16 stable (68 metastable crystals) are present in the
Materials Project. Stable crystalline phases are well established for
binary compounds at the edges of the phasediagramsuch as Li3P, LiCl,
and Li2S. Using our approach, 17 new stable structures are proposed
below the convex hull, along with 435 metastable structures.

Remarkably, only two quaternary entries, Li₆PS₅Cl and
Li₅P(S₂Cl)₂, are found in theMaterials Project. Figure 5a represents the
phase diagram of 250 metastable structures, derived from the new
convex hull constructed using 435 newly generated quaternary meta-
stable structures. Furthermore, 50 of the quaternary structures with
the lowest energy above the convex hull are presented in Supple-
mentary Fig. S11. These findings reveal patterns in the generated
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structures, particularly with respect to coordination environments. Li
frequently exhibits tetrahedral coordination environments involving S
or Cl. P tends to form both tetrahedral and trigonal bipyramidal
polyhedra with S. The energy distribution of the generated structures,
as depicted in Supplementary Fig. S8, reveals that approximately 80%
of the sampled configurations have energy values within 0.15 eV/atom
above the convex hull. This suggests that Chemeleon has effectively
learned stable local coordination environments, even for the Li-S-Cl
system that had zero entries in the training set. To further assess the
structure stability, vibrational (phonon) calculations were performed.

Figure 5d shows four dynamically stable structures Li5PS4Cl, Li6PS4Cl,
Li4PS4Cl, and Li3PS3Cl with their band structures are provided in Fig. 5e
and Supplementary Fig. S12. Thephonondispersion for themetastable
quaternary structures exhibits no imaginary frequencies throughout
the Brillouin zone, indicating that these are true local minima on the
potential energy surface.

For binary and ternary systems, the combined phase diagrams
with both known and generated structures for ternary systems in Li-P-
S-Cl are provided in Fig. 5b. The 17 stable structures generated by
Chemelon are presented in Supplementary Fig. S13. Many of these are

Fig. 5 | Quaternary Li-P-S-Cl space. a A phase diagram including generated
structures for quaternary materials. b Combined phase diagrams of known and
generated materials for ternary combinations in Li-P-S-Cl system, including Li-P-S,
Li-P-Cl, Li-S-Cl, and P-S-Cl. c Five representative generated structures from the

combined phase diagram for Li-P-S. d Four generated metastable and dynamically
stable materials from the combined phase diagram for Li-P-S-Cl (e) Phonon dis-
persion of Li4PS4Cl, exhibiting dynamically stability (absence of imaginary vibra-
tional modes).
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molecular crystals, mirroring some of the known phases such as P2S5
and PCl3 (see Supplementary Fig. S14); however, we note that some
containmolecular fragments or voids that appear unlikely to be stable.
While Li₃PS₄ can exist inmultiple crystalline forms includingα, β, and γ
polymorphs, an alternative stable triclinic configuration on the DFT
energy landscape, has been generated as shown in Fig. 5c. In addition,
Chemeleon successfully generated structures such as Li₂PS₃, Li₃PS₆,
LiPS₄, and LiPS₆ with the presence of known thiophosphate motifs
characteristic of (P2S6)

4− and (PS4)
3−. Notably, Li₂PS₃ also exhibits

dynamically stability without imaginary vibrational frequencies as
shown in Supplementary Fig. S12. The search of the Li-P-S-Cl space
using Chemeleon required approximately 72 h on a single A100 GPU,
while a conventional evolutionary algorithm search would have taken
orders of magnitude more computational time.

In this workflow, we demonstrate that a text-guided generative
model can serve as an efficient and versatile tool for navigating che-
mical space. In Supplementary Note S3, we conduct an analysis of
sampling in practical use cases using various existing CSP methodol-
ogies, including diffusion-based DiffCSP, LLM-based CrystaLLM50, and
element substitution51. Other methods designed for the CSP task,
which primarily focus on optimizing atomic arrangements and lattice
matrices based on compositional inputs, can also be integrated into
this workflow. These methods, along with our text-guided sam-
pling approach, offer complementary strategies for exploring
chemical space.

Model limitations
While Chemeleon demonstrates considerate potential in navigating
chemical systems based on textual descriptions, several limitations
must be addressed for broader applicability. There is not a rigid con-
straint between the input text and the generated compounds, i.e., an
input of Cu2O5 may result in a structure with stoichiometry Cu3O4 due
to the distribution in compositions it is stochastically sampling from.
In turn, a request for a cubic crystal may return a unit cell that is not
strictly cubic but should be close to the learned conditions a = b = c,
alpha = beta = gamma= 90°. This issue could be viewed as a feature
when it comes to flexible inverse design as the prompt is a text guide
rather than hard coded rule or relationship.

One challenge arises when the generation process involves
numerical properties, such as band gap. Current text encoders strug-
gle to interpret and generate numerical data accurately. Transformer-
based models, while efficient, tend to have difficulty distinguishing
between numerical values, especially since many are pre-trained on
masked language modelling tasks that aren’t designed to handle
numbers well. More advanced models, like Transformer decoders or
T5 encoders52 with more sophisticated pre-training, could offer a
solution. Moreover, due to the stochastic nature of the generation
process, guiding the model to match compositions when many atoms
are in the unit cell can be challenging.

To further explore the potential of text-guided generation in
Supplementary Note S4, we trained Chemeleon using common
mineral types that align with human naming conventions, such as
“perovskite” and “spinel”. It successfully generates new perovskite-
type structures, showcasing the flexibility and scalability of our
approach. While our current work focuses on relatively straightfor-
ward textual descriptions of composition and crystal systems, future
research should expand to more intricate, application-specific sce-
narios, including constraints on advanced material properties. More-
over, leveraging anexpanded range of textual inputs, fromabstracts to
full research articles, will further enhance the text-guide crystal
structure generation’s potential from natural language inputs.

In conclusion, we developed a text-guided denoising diffusion
model for materials generation. By aligning embeddings from both a
text encoder andGNNs through contrastive learning, we improved the
model’s ability to generate crystal structures guided by textual inputs.

Furthermore, contrastive learning proved more effective when the
textual descriptions had diverse styles, rather than relying on strictly
formatted text. This approach enabled the successful sampling of
crystal structures for well-known systems such as the binary Ti-O and
ternary Zn-Ti-O chemical spaces, offering insights into the generative
capabilities of AI models. In addition, the model explored less-
characterized systems like Li-P-S-Cl, important for solid-state bat-
teries, where both stable and metastable structures were identified,
and a revised phase diagram was proposed. While further develop-
ments are required to expand towards more complex structures and
properties, these methods have already made large-scale computa-
tional searches of chemical space more accessible.

Methods
Dataset construction
The dataset utilized in this study was curated from the Materials Pro-
ject database (version 2023.11.01), filtered for unit cells containing 40
atoms or fewer. A total of 32,525 structures were obtained through the
Materials Project API, ensuring that all selected structures were
experimentally observed and possessing an energy above the convex
hull of less than 0.25 eV per atom. Structures with cell lengths
exceeding 20Å were also excluded. Structures that naturally exist as
gases at standard room temperature, such as H₂, O₂, and noble gases,
were systematically excluded from the dataset to avoid isolated neu-
tral molecular fragments when generating crystal structures. To rig-
orously evaluate the model’s generalizability to unseen data, a
chronological split was applied. Entries registered before August 2,
2018, were allocated to the training and validation set, while those
added after this date were used as the test set. Detailed distributions of
properties, including the number of entries per year, crystal system,
and number of atoms, are provided in Supplementary Fig. S15.

To generate textual descriptions in general text form, the gpt-3.5-
turbo model in OpenAI API was used to generate five textual descrip-
tions with diverse styles for each material when its composition and
crystal system are given. One of these generated textual descriptions
was randomly selected for general text form. The prompt used for
generating these descriptions and the examples are detailed in Sup-
plementary Fig. S3.

Contrastive learning
To achieve alignment between text and graph embeddings within a
shared embedding space, we adopt a contrastive learning24 approach.
The text embeddings Etext 2 RB×d are derived from the first token of a
BERTmodel, with an initial dimension of 768, where B is the batch size.
The graph embedding Egraph 2 RB×d are obtained by applying average
pooling to the out features of the GNN, initially having a dimension of
512. Both embedding vectors are passed through a projection layer
that transform them into a unified embedding dimension d, 768.

The pairwise similarity matrices for text and graph embeddings
are computed by Stext = EtextE

>
text and Sgraph = EgraphE

>
graph, where St

and Sg are both RB×B.
The target similaritymatrixT is defined as the softmax function of

the two similarity matrices:

Tij =
exp

Stext + Sgraph
2

� �
ijPB

k = 1 exp
Stext + Sgraph

2

� �
ik

ð1Þ

which typically approximates an identity matrix where T 2 RB×B.
The logits R representing the similarity between text and graph

embeddings, are computed as R= EtextE
>
graph. The contrastive learning

loss Lcontrastive is computed by cross-entropy when the logits and
target distributions. The text-to-graph loss Lt and graph-to-text loss
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Lg are defined as:

Ltext = � 1
B

XB
i

XB
j

Tij log
expðRijÞPB
k = 1 expðRik Þ

 !
ð2Þ

Lgraph = � 1
B

XB
i

XB
j

Tij log
exp Rji

� �
PB

k = 1 exp Rjk

� �
0@ 1A ð3Þ

The final lossLcontrastive is the average of these two components:

Lcontrastive =
1
2
ðLgraph +LtextÞ, ð4Þ

The training of contrastive learningwas implementedwith a batch
size of 128, using the Adam optimizer. The learning rate for graph and
text encoders are set to 10−4 and 10−5, respectively. The training was
conducted over 1000 epochs with early stopping, which is triggered if
the validation loss doesn’t improve for 300 epochs. A learning rate
scheduler with a reduction on plateaumechanismwas employed, with
a patience parameter set to 200 epochs.

Diffusion model
A denoising diffusion model is employed for generating crystal
structures which are represented as C = ðA, X , LÞ, where A 2 ZN

represent the atom types, X 2 ZN×3 denote the fractional coordinates
of the atoms within the unit cell, and L 2 Z3 × 3 is the lattice matrix
defining the unit cell dimensions and angles. The diffusion process
comprises a forward process, which the stochastic degradation (or
corruption) of the crystal structures, while the reverse process itera-
tively learns the pattern to gradually reconstruct the data distribution
from pure noise. The forward process is qðC1:T jC0Þ=

QT
t = 1qðCt jCt�1Þ,

which add noise to the original structure C0 over T time steps, while
the reverse process pθ C0:T

� �
=p CT

� �QT
t = 1pθðCt�1jCtÞ is a Markov

process that iteratively denoises the corrupted structure, recon-
structing the data distribution from pure noise to sample crystal
structures. The generative models for crystal structures consists of
three distinct diffusion processes, each designed to a specific com-
ponent of the crystal structures: atom type A, atomic fractional
coordinates X , and lattice matrix L.

Diffusion process for atom types, A
Atom types aremodelled as discrete categorical variables, where each
atom type is represented as a discrete label from a finite set. Denoising
Diffusion Models in Discrete State-Spaces (D3PM)53 approach was
adopted, which adapts the diffusion process to suit discrete state
spaces. In the forward process, it gradually corrupts the atom types
over time by introducing noise through a series of transition matrices,
while typically adding random noise such as Gaussian noise during
corruption. Specifically, an absorbing transitionmatrix Qt at each time
step t transforms the original atom types into noise state. The
absorbing state ensures that the distribution At becomes independent
of the initial atom types A0 as t becomes sufficiently large. The cor-
rupted atom types at time t, At are sampled by:

q At jA0

� �
=CatðAt ;p=A0

�QtÞ, ð5Þ

where Catðx;pÞ represents a categorical probability distribution with
parameter p, and �Qt =Q1Q2 . . .Qt is the cumulative product of the
transition matrices Qt at each time step. T , The absorbing transition
matrices in the D3PM approach is adopted, where it is designed to
transformAT into dummyatom, ofwhich atomic number is zero, at the
final time step.

The training loss function for this process is derived from the
negative variational lower bound (VLB), augmented by an auxiliary
cross-entropy loss term. The VLB is expressed as:

Lvb = EqðA0Þ DKL q At jA0

� �� �jjp AT

� �� ��
+
XT
t = 2

Eq At jA0ð Þ DKL q At�1jAt ,A0

� �jjPθ At�1jAt

� �� �� �
�Eq A1 jA0ð Þ½logpθðA0jA1Þ�

i
,

ð6Þ

where each term represents loss for t =T , t � 1, 0, respectively. To
further enhance themodel’s ability to accurately reconstruct the atom
types, an auxiliary cross-entropy loss term Lce is added, which directly
penalizes the discrepancy between the predicted atom types and the
true atom types at time step t =0. Therefore, the final loss is defined
by:

LA =Lvb + λceEqðA0ÞEqðAt jA0Þ½�logpθðA0jAtÞ�, ð7Þ

where λce is a coefficient that controls the weight of the cross-entropy
loss, which is set to 1.0 in this work.

Diffusion process for lattice matrix, L
The lattice matrix L is a continuous variable representing the unit cell
parameters, consisting of 3 × 3 matrix. To model the diffusion process
of lattice matrix, Diffusion Probabilistic Model28 framework was
adopted. In the forward process, Gaussian noise is added to the lattice
matrix at each time step t, preserving the variance of the original
distribution. Given an initial latticematrix L0, the noisy latticematrix in
forward process is sampled by:

qðLt jL0Þ = N ðLt j
ffiffiffiffiffi
�αt

p
L0, ð1� �αtÞIÞ, ð8Þ

Where �αt =
Qt

s = 1αt =
Qt

s = 1ð1� βsÞ is the cumulative product of noise
schedule parameters where βt 2 ð0, 1Þ. Therefore, the noisy lattice at
time step t, is computed as:

Lt =
ffiffiffiffiffi
�αt

p
L0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p
ϵL, ð9Þ

where ϵL � Nð0, IÞ is Gaussian noise. The reverse process is para-
meterized by θ, predicting the distribution pθðLt�1jLtÞ to reconstruct
L0. The loss function for the lattice parameters is the mean squared
error (MSE) between the true noise added to the lattice and the pre-
dicted noise:

LL, t =EqðLt jL0ÞðjjϵL � ϵ̂θ Lt , t
� �jj2Þ, ð10Þ

The loss is computed as the average across random time steps t,
uniformly sampled from the interval 0½ ,TÞ.

Diffusion process for atom coordinate, X
The fractional coordinates X of atoms within the unit cells are con-
tinuous variables bounded within the domain [0, ð1Þ3. Modeling the
diffusion process for these coordinates presents unique challenges
due to their cyclical and bounded nature. To address this, we employ a
Score-Matching (SM) based framework54,55, which is a variance-
exploding diffusion process. It which has been demonstrated as
effective for generative models for fractional coordinate. The forward
process was carried out with theWrapped Normal (WN) distribution56,
Nw and the variance σ2

t at time t:

q Xt jX0

� �
=NwðXt jX0, σ

2
t IÞ, ð11Þ
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This noise is wrapped around the domain [0, 1ð Þ3 to ensure that
the atomic position remain within bounded region while preserving
the periodicity.

The noisy data for fractional coordinate Xt at time step t is com-
puted as:

Xt =wðX0 + σtϵX Þ ð; 12Þ

where ϵX is sample froma standard normal distributionNð0, IÞ andwð�Þ
is the truncation function that ensures the coordinates remain within
the domain by wrapping them around the boundaries. The training
objective is to minimize MSE between the actual noise ϵX and the
predicted noise ϵ̂θ:

LX , t =EqðXt jX0ÞðjjϵX � ϵ̂θ Xt , t
� �jj2Þ ð; 13Þ

The loss is averaged over random time steps t uniformly sampled
from the range 0½ ,TÞ.

Training details
The overall loss is a weighted sum of the losses for atom types, lattice
matrix, and atom coordinate:

Ltotal = λALA + λLLL + λXLX ð; 14Þ

λA, λL, λX represents weights for atom type, lattice matrix, and
atom coordinate, respectively, with each weight set to 1.0. Model
training was performed using a single A100 80GB GPU with the same
batch size and learning rate scheduler in the contrastive learning,
except for the learning rate 10−3 for diffusion models.

Text-guided generation
The text-guided generation is implemented through classifier-free
guidance30, which uses text embeddings as condition data. In classifier-
free guidance, the model is trained to conditionally generate samples
based on both the input text and an unconditional distribution,
allowing it to flexibly adjust the level of guidance based on the text
input. Given text embeddings Etext 2 RB×d obtained from the pre-
trained Crystal CLIP, the conditional distribution at each time step can
be represented as:

pθðAt�1Lt�1Xt�1jAtLtXtEtext, tÞ, ð15Þ

To balance learning from both conditional and unconditional
distributions, themodel is trainedwith a conditional dropout strategy,
where the conditioning text input is randomly omitted with a prob-
ability of 0.2.

During inference, the classifier-free guidance is applied by inter-
polating between the conditional and unconditional predictions. This
is expressed by modifying the predicted noise as:

eϵθ Xt , Etext, t

�
= ð1� γÞϵθðXtÞ+ γϵθðXt , Etext, tÞ, ð16Þ

where γ is a weighting factor that determines the extent of text gui-
dance influence. In this work, γ is set to 2.0, which biases the genera-
tion process towards the text guidance.

To effectively incorporate text embeddings as conditioning data,
Feature-wise Linear Modulation (FiLM)57 layers are employed. FiLM
layersmodulate the intermediate feature representations of the neural
network by applying affine transformations, where the scaling and
shifting parameters are functions of the text embeddings. This
mechanism enables the network to adjust its internal feature activa-
tions dynamically in response to the input text, thereby aligning the
generated outputs more closely with the intended textual guidance.

Denoising network
We adopted the equivariant GNNwith respect to Eð3Þ transformations,
including translation, rotation, and reflection developed by DiffCSP14.
It is built on the EGNN58 framework, which achieves geometric equiv-
ariance in a computationally efficient manner by explicitly encoding
Cartesiancoordinate informationduring themessage-passing process.
To further enhance themodel’s ability to handle crystal structureswith
periodic invariance along with the Eð3Þ symmetries, they introduced a
Fourier transformationon the fractional coordinates of the atoms. This
transformation plays a crucial role in facilitating periodic E(3)-invariant
outputs by capturing the inherent periodicity in the lattice structures
of crystals. The use of fractional coordinates, compared to Cartesian
coordinates, is particularly powerful when combined with the WN
diffusion process. This approach aligns with the intrinsic periodicity of
crystal lattices, allowing for more accurate modelling of atomic
positions.

First-principles calculations
All DFT calculations carried out in this work were performed using the
Vienna ab initio simulation package (VASP)59,60 within the Projector
Augmented Wave formalism61 using Atomate239, FireWorks62, Pymat-
gen, and Custodian32. For consistency with the Materials Project to
build phase diagrams of the generated structures, the relaxation and
static classes used the MPGGADoubleRelaxStaticMaker class to create
the workflows for each structure, including using the PBE exchange-
correlation functional63. For phonon calculations, the PhononMaker
class in atomate2.vasp.flows.phonons module was used. For con-
structing supercells, a minimum length of 10Å is used instead of the
default of 20Å to reduce the computational cost. The phonon com-
putations were started from the primitive standardised structures
using the PBEsol functional64, which provides a better description of
unit cell volumes and phonon frequencies of crystals.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MP-40 dataset utilized in this study are available at the Zenodo
repository: https://doi.org/10.5281/zenodo.15090949. The DFT-optimised
structures in TiO2, Ti-Zn-O, Li-P-S-Cl system generated by Chemeleon, are
provided in Supplementary Data (raw CIF files). Source data are provided
with this paper.

Code availability
The source code for Chemeleon is available at the following GitHub
repository: https://github.com/hspark1212/chemeleon/. To ensure
reproducibility of this study, the specific version of Chemeleon (v0.1.1)
is archived at Zenodo: https://doi.org/10.5281/zenodo.15090949. The
training and testing logs are available on Weights & Biases at: https://
wandb.ai/hspark1212/Chemeleon_v0.1.1.
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