Prediction of high- T_c superconductivity in ternary lanthanum

borohydrides

Xiaowei Liang¹, Aitor Bergara^{2,3,4}, Xudong Wei¹, Linyan Wang¹, Rongxin Sun¹, Hanyu Liu^{5,6,*}, Russell J. Hemley⁷, Lin Wang¹, Guoying Gao^{1,*}, Yongjun Tian¹

¹ Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

² Departmento de Física, Universidad del País Vasco, UPV/EHU, 48080 Bilbao, Spain

³ Donostia International Physics Center (DIPC), 20018 Donostia, Spain

⁴ Centro de Física de Materiales CFM, Centro Mixto CSIC-UPV/EHU, 20018 Donostia, Spain

⁵ International Center for Computational Method & Software and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China

⁶ Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), International Center of Future Science, Jilin University, Changchun 130012, China

⁷ Departments of Physics and Chemistry, University of Illinois at Chicago, Chicago IL 60607, USA

* Corresponding author. E-mail address: gaoguoying@ysu.edu.cn;

hanyuliu@jlu.edu.cn

ABSTRACT

The study of superconductivity in compressed hydrides is of great interest due to measurements of high critical temperatures (T_c) in the vicinity of room temperature, beginning with the observations of LaH₁₀ at 170-190 GPa. However, the pressures required for synthesis of these high T_c superconducting hydrides currently remain extremely high. Here we show the investigation of crystal structures and superconductivity in the La-B-H system under pressure with particle-swarm intelligence structure-searches methods in combination with first-principles calculations. Structures with six stoichiometries, LaBH, LaBH₃, LaBH₄, LaBH₆, LaBH₇ and LaBH₈, were predicted to become stable under pressure. Remarkably, the hydrogen atoms in LaBH₈ were found to bond with B atoms in a manner that is similar to that in H₃S. Lattice dynamics calculations indicate that LaBH₇ and LaBH₈ become dynamically stable at pressures as low as 109.2 and 48.3 GPa, respectively. Moreover, the two phases were predicted to be superconducting with a critical temperature (T_c) of 93 K and 156 K at 110 GPa and 55 GPa, respectively ($\mu^*=0.1$). Our results provide guidance for future experiments targeting new hydride superconductors with both low synthesis pressures and high T_c .

Introduction

Exploration of superconductivity in materials at ever increasing temperatures is a burgeoning research topic in condensed matter physics, chemistry, and materials science. Conventional electron-phonon coupling considerations point to compressed hydrogen-rich materials as excellent candidates for superconductors having high critical temperatures $(T_c$'s) due to the potential for formation of atomic hydrogen lattices in which the low mass leads to both high vibrational frequencies and strong electron-phonon coupling. As originally proposed by Ashcroft¹, this concept has inspired numerous studies (see Refs.²⁻⁶ for reviews), specifically the recent progress on pressurized hydrides predicted and observed to have high T_c 's above 200 K in pursuit of superconductivity at, or even above, room temperature⁷⁻²¹. However, pressures in the megabar range (>100 GPa) are required to synthesize and stabilize the high- T_c hydrides considered so far. For example, high- T_c superconductivity was established above 170 and 166 GPa for clathrate metal hydrides LaH₁₀¹⁶ and YH₆¹⁹, and near 155 and 267 GPa for p-block element hydrides H₃S¹³ and C-S-H²¹, respectively, where the pressures are those of the reported T_c maxima. Given the very high pressures required to create these high critical temperatures, the pursuit of high- T_c superconductivity in hydrides that can persist in stable or metastable compounds at lower, and even ambient, pressure remains an important goal.

The stability of binary hydrides having potential superconducting T_c 's above 100 K has been largely limited to pressures above 100 GPa²². For example, synthesis of superhydride UH₇ has been reported at a low pressure of 31 GPa, but its T_c is estimated to be 44 K^{23,24}. The lowest pressures reported for stabilization of a superhydride include those of CeH₉ at 80 GPa²⁵ and BaH₁₂ at 75 GPa²⁶ for atomic and molecular-based hydrogen structures, respectively. Predictions of lower pressure stability of hydrogen-rich binary hydrides include that of RbH₁₂, which is calculated to be stable at 50 GPa with a T_c near 115 K²². With the additional degrees of freedom made possible by expanding the chemical space available, ternary hydrides are receiving growing interest as means both to increase T_c and to enhance stability over a broader range of pressures. As such, a T_c of 287 K has been reported in a C-S-H mixture at about 267 GPa, while the structure and composition for the high- T_c phase remain unclear²¹. Theoretical calculations predict that hydride perovskite structures based on the above elements could be a route to stabilizing lower pressure hydride superconductors, for example, by sublattice replacement of SH₃ with CH₄ in H₃S to produce structures of composition CSH7 with predicted dynamical stability, and therefore kinetic stability, at lower pressures than that of pure $H_3S^{27,28}$. Lower level CH₄ substitution in the material, either as stoichiometric compounds or doped structures, could enhance low-pressure stability, as well as significantly enhance T_c as recently predicted for the C-S-H superconductor²⁹. These results further suggest that ternary hydride systems may be a useful venue for discovering high- $T_{\rm c}$ superconductors at low pressures.

Theoretical studies indicate that adding Li and Ca to the B-H binary stabilizes phases that accommodate more H atoms, leading to ternary hydrides with higher T_c 's

relative to those found for B-H phases³⁰⁻³⁴. Given its larger ionic radius, La can accommodate more atomic H (*e.g.*, as a superhydride) compared to Li and Ca¹¹. Therefore, the stable phases with higher H content might be obtained in the La-B-H system under pressure. Moreover, a recent experimental study reported evidence for superconductivity at and above room temperature in La-hydride samples upon thermal annealing³⁵. Given that ammonia borane (NH₃BH₃) was used as a hydrogen source, the formation of La-H phases containing boron was suggested as giving rise to the high $T_c^{16, 35}$.

In this study, we examine theoretically high-pressure structures, stability, and superconducting properties of stoichiometric La-B-H phases, with a focus on lower pressure stability. Detailed study of phases with composition LaBH_x (x=1-10) reveals intriguing H-rich LaBH₇ ($P\bar{3}m1$) and LaBH₈ ($Fm\bar{3}m$) structures containing BH₆ and BH₈ units, respectively. Moreover, LaBH₇ and LaBH₈ are dynamically stable at pressures as low as 109.2 and 48.3 GPa, with predicted T_c 's of 93 and 156 K at 110 and 55 GPa, respectively. Our results indicate that continued exploration of ternary hydrides in these and related chemical systems may be an effective route to realizing a high-temperature superconductivity at lower, or even ambient, pressure.

Results and Discussion

Before investigating the phase stability of ternary La-B-H compounds under pressure, we first assessed information about the La-H, B-H and La-B binaries. The high-pressure behavior of the B-H³²⁻³⁴ and La-H^{11,12,36-38} binaries has been well-studied in recent years, whereas information on the La-B system under pressure is lacking. We therefore performed structure-search calculations for La_nB_m (n=1, m=1-6; n=2, m=1) with system sizes containing up to 4 or 8 formula units (f.u.) per simulation cell at pressures of 100-300 GPa. To identify the stability of different stoichiometries, convex hulls were constructed by calculating the formation enthalpies for predicted La_nB_m structures relative to the elemental La and B (Fig. S1). All the stoichiometries were found to have negative formation enthalpies within 100-300 GPa, showing that they are thermodynamically stable with respect to decomposition into La and B elements. The increase in formation enthalpy indicates that the stability of the phase decreases with increasing pressure; in addition, a stoichiometry located on the hull is stable with respect to other binary compounds, otherwise it is metastable. From the convex hull calculations, we found that LaB, LaB₄, LaB₅ and LaB₆ are stable at 100 GPa. At 200 GPa, LaB and LaB₅ remain on the convex hull, whereas LaB₄ and LaB₆ were predicted to possibly decompose into LaB+LaB₅ and LaB₅+B, respectively. At 300 GPa, the stable stoichiometries are LaB, LaB₃ and LaB₆. Notably, LaB was found to remain thermodynamically stable throughout the entire pressure range studied.

Calculated La-B-H ternary phase diagrams at 100-300 GPa are presented in Fig. 1. All the ternary hydrides are stable relative to dissociation into elements at the pressures studied. Moreover, all the ternary hydrides studied have lower enthalpies than those of LaB and H₂, suggesting that they are stable against decomposition into LaB and H₂ (Fig. S2). We note that LaBH, LaBH₄ and LaBH₆ fall on the 3D convex

hull at 100 GPa, indicating that they are also stable phases with respect to decomposition into binary and other ternary phases. At 150 GPa, an additional composition, LaBH₇, appears on the convex hull. With further increase in pressure to 200 GPa, the originally stable LaBH₆ is predicted to decompose into LaBH₄ and LaBH₇, and the higher H content LaBH₈ begins to become stable. At 300 GPa, the formation enthalpy of LaBH₈ is increasingly negative. LaBH and LaBH₇ become metastable phases with higher enthalpies relative to 1/4 LaB₃+1/4 LaB+1/2 LaH₂ and 1/4 LaBH₄+3/4 LaBH₈, respectively, and LaBH₃ falls on the convex hull. To determine accurate stability pressures, we also plot the specific enthalpy curves of LaBH₄, LaBH₆, LaBH₇ and LaBH₈ relative to other compounds (Fig. S3). After including zero-point energy corrections (Fig. S4)³⁹, we found that LaBH₄ remains thermodynamically stable in a $P2_1/m$ structure within the entire pressure range studied. C2/c-LaBH₆ is stable below 134 GPa. For LaBH₇, the $P\overline{3}m1$ structure is predicted to become stable against dissociation into other stoichiometries at pressures of 103-233 GPa. LaBH₈ is predicted to crystallize in the cubic $Fm\bar{3}m$ structure, which is stable relative to LaBH₇ and H₂ above 161 GPa.

Fig. 1 Calculated convex hull of the La-B-H system at 100, 150, 200 and 300 GPa.

Thermodynamically stable and metastable stoichiometries are shown as purple circles and blue triangles, respectively.

The predicted stable structures of the La-B-H system are shown in Fig. 2. LaBH adopts the hexagonal P6/mmm structure, in which B atoms form honeycomb sheets and B, La, and H atomic layers are alternately arranged. In LaBH₃ and LaBH₄, zigzag B chains stretch along specific directions while B atoms are surrounded by H atoms to form covalent bonds. Since more H atoms are filled in C2/c-LaBH₆, no bonds exist between B atoms and each B atom forms a BH₄ unit with the adjacent four H atoms. With the increasing H content of LaBH₇, each B atom accommodates six H atom to form BH₆ units. The BH₆ groups are located on the vertices and edges of the hexagonal structure, with the BH₆ units distributed on the edges connected to each other by H atoms. The H-richer LaBH₈ assumes a high-symmetry $Fm\overline{3}m$ structure in which B atoms accommodate all the H atoms to form BH₈ covalent units that occupy the octahedral interstices of the face-centered cubic lattice formed by La atoms. In H_3S , the S atoms located on a body-centered cubic lattice with each S atom covalently bonded to the surrounding six H atoms. The H atoms in LaBH₈ are found to bond with B in a manner that is similar to that of S in H₃S. In addition, the atomic positions of La and eight H atoms in $LaBH_8$ are the same as those of La and eight of the H atoms in LaH₁₀. Given the high T_c of H₃S and LaH₁₀, this similarity in bonding and high symmetry structure suggests interesting superconducting properties of LaBH₈ as well.

Lattice dynamics calculations were carried out for the phases in the pressure ranges of their predicted thermodynamic stability. The lack of imaginary frequencies in the calculated phonon dispersion curves indicates that all structures are dynamically stable within the harmonic approximation (Figs. 5 and 5S). On the other hand, phonon softening is evident for LaBH₇ and LaBH₈, an effect that can enhance the EPC¹¹. With decreasing pressure, these phonon modes further soften and eventually have imaginary frequencies. Figure S6 shows the frequency of the softest mode as a function of pressure. In contrast to LaH₁₀, LaBH₇ and LaBH₈ maintain dynamical stability to pressures as low as 109.2 and 48.3 GPa, respectively, and the latter is much lower than that predicted for other H-rich hydride superconductors. By analyzing the eigenvectors of soft modes for LaBH₇ at the *M* point and LaBH₈ at the Γ point (Fig. S7), it is found that the structural instability mainly stems from the vibration of H atoms. Similar behavior was found for the clathrate superhydride LaH₁₀^{11,36}.

Fig. 2 The predicted crystal structures of ternary hydrides under pressure. (a) P6/mmm-LaBH, (b) Pmma-LaBH₃, (c) $P2_1/m$ -LaBH₄, (d) C2/c-LaBH₆, (e) $P\overline{3}m1$ -LaBH₇ and (f) $Fm\overline{3}m$ -LaBH₈. Magenta, blue and green balls represent La, B and H atom, respectively.

To understand the origin of relatively low-pressure stability of $P\bar{3}m1$ -LaBH₇ and $Fm\bar{3}m$ -LaBH₈, we explored the bonding of these structures by calculating the electron localization function (ELF)^{40,41} and Bader charge transfer⁴² among atoms. ELFs with an isosurface of 0.6 are shown in Figs 3a and b for the two phases at 110 and 55 GPa, respectively. Electron density at the La atoms is due to their inner valence shells. Many electrons are clearly localized between B and H atoms and closer to the H atoms. The ELF slice in the (110) plane containing La, B and H atoms for LaBH₇ and LaBH₈ (Fig. 3c) also shows that the ELF values between B and H atoms gradually increase toward H atoms, suggesting the polar covalent character of the B-H bond. In LaBH₇, atom H2 appears to form a covalent bond to H1 with an ELF value of 0.64 connecting BH₆ units on the edges. In both phases, the ELF values at the center of the shortest La-H and La-B are below 0.3, indicative of an ionic character between La and B-H units.

Bader charge calculations show that electrons transfer from La and B to H atoms. In LaBH₇, each La atom and B atom located on the vertex and edge of the lattice loses 1.44, 1.37 and 1.16 electrons, respectively. Correspondingly, each H atom in BH₆ at the vertex (H3) and edge (H1) accepts 0.45 and 0.39 electrons, respectively. The H atom (H2) that only bonds with a H atom gets 0.15 electrons. The existence of the H1-H2 covalent bond weakens the B-H1 bond connected to it. In LaBH₈, each La and B atom transfers 1.47 and 1.04 electrons to eight H atoms, respectively. With increasing pressure, the number of electrons transferred by La and B atom decreases and increases, respectively. In H-rich $Fm\bar{3}m$ -LaH₁₀, the H atoms are linked by weak covalent bonds to form cage structures. As pressure decreases, the H-H interactions in cages become weaker, which leads to an instability of the H cages^{11,36}. The results suggest that in these H-rich La-B-H compounds, strong interactions between B and H atoms, and between La and B-H units, play an important role in their relatively low-pressure dynamical stability.

Fig. 3 The Calculated ELF with isosurface value of 0.6 and ELF in the (1 1 0) plane for (a) $P\overline{3}m1$ -LaBH₇ and (b) $Fm\overline{3}m$ -LaBH₈ at 110 and 55 GPa, respectively.

We further investigated the electronic properties of the stable structures found in the La-B-H system. The calculated electronic density of states (DOS) for *P6/mmm*-LaBH, *Pmma*-LaBH₃, *P2*₁/*m*-LaBH₄ and *C2/c*-LaBH₆ within their ranges of pressure stability are shown in Fig. S8. The electronic DOS at the Fermi level indicates that they are all metallic. *P6/mmm*-LaBH, *Pmma*-LaBH₃ and *P2*₁/*m*-LaBH₄ all have relatively high DOS values at the Fermi level. However, this metallicity is mainly derived from the contribution of La and B atoms: there is a negligible H contribution to the DOS at Fermi level, which is unfavorable to superconductivity. In *C2/c*-LaBH₆, the Fermi level falls at the valley of the electronic DOS, showing poor metallicity.

We further focused our investigation on the H-richer LaBH₇ and LaBH₈ compounds. Figure 4 illustrates the calculated electronic band structures and DOS of $P\bar{3}m1$ -LaBH₇ and $Fm\bar{3}m$ -LaBH₈ at 110 and 55 GPa, respectively. They are the metallic phases with some bands crossing the Fermi level. In LaBH₇, a flat band with

more localized electronic states appears near the Fermi level at the Γ point, which might enhance the electron-phonon interactions. "Flat-steep" band features are beneficial for superconductivity⁴³. As such, the steep and flat bands are found for LaBH₈ along the Γ -X and X-W directions near the Fermi level, respectively. The trend of the band dispersions for LaBH₈ in 200 GPa is similar to that in 55 GPa (Fig. S9). In addition, the contribution of H atoms to the DOS at the Fermi level exceeds that of La and B atoms in LaBH₇, and the metallicity are dominated by H atoms in LaBH₈, which suggest that $P\bar{3}m1$ -LaBH₇ and $Fm\bar{3}m$ -LaBH₈ may be high- T_c superconductors.

Fig. 4 The calculated electronic band structure and density of states of $P\bar{3}m1$ - LaBH₇ and $Fm\bar{3}m$ -LaBH₈ at 110 and 55 GPa, respectively.

Given their promising electronic properties, we calculated the superconducting properties of LaBH₇ and LaBH₈. We calculated their phonon spectra, projected phonon DOS, Eliashberg phonon spectral function $\alpha^2 F(\omega)/\omega$ and integral $\lambda(\omega)$ for the two phases at 110 and 200 GPa, respectively (Fig. 5a, b). Similar to the hydrides studied previously, the projected phonon DOS can be separated into three regions. The La atom with the heaviest atomic mass dominates the low-frequency region, whereas the vibrations of the B and H atoms are associated with the mid- and high-frequency phonon branches, respectively. The spectral function $\alpha^2 F(\omega)/\omega$ for LaBH₇ is mainly distributed below 30 THz, especially between 8-15 THz (Fig. 5a),

which results in an EPC constant λ of 1.46 at 110 GPa. However, the value of the phonon DOS between 8-15 THz is negligible. Further analysis reveals a soft mode in this frequency range with a potentially large EPC contribution. The distribution of the EPC strength on the different phonon modes are also plotted with the spectra. The soft mode associated to H atoms below 20 THz around the *M* point shows a quite large EPC. Similarly, for LaBH₈ the calculated EPC λ is 0.72 at 200 GPa, and the contribution to λ of the vibrations related to H atoms above 30 THz accounts for 83% of the total value. The soft mode near 30 THz at Γ makes an important contribution to the EPC. Previous studies of related superconducting hydrides indicate that the total EPC may be enhanced by further phonon softening induced by decompression toward the structural instability predicted by this harmonic approximation of the lattice dynamics^{7,11}. Calculations for LaBH₈ indicate that λ increases to 1.97 and 2.29 near its predicted instability at 55 (Fig. 5c) and 50 GPa (Fig. S10), which are comparable with the value of 2.19 found for H₃S at 200 GPa. The main contribution to the strong EPC at 55 GPa arises from soft modes below 20 THz associated with H atoms (Fig. 5c).

We adopted the Allen-Dynes modified McMillan equation to estimate the T_c of $P\bar{3}m1$ -LaBH₇ and $Fm\bar{3}m$ -LaBH₈ at different pressures (Table I)⁴⁴. For LaBH₇, the calculated λ and phonon frequency logarithmic average ω_{\log} is 1.46 and 837 K at 110 GPa, leading to a T_c of 93 K with $\mu^*=0.1$. As pressure decreases from 200 to 100, 55 and 50 GPa, the calculated λ for LaBH₈ increases from 0.72 to 1.11, 1.97 and 2.29, whereas ω_{\log} decreases from 1557 to 1189, 807 and 692 K. As a result of these two effects, the calculated T_c first increases from 58 to 115 K and then decreases to 108 K assuming $\mu^*=0.1$, which follows the trend of λ and ω_{\log} with pressure, respectively. Since the λ of LaBH₈ at 55 and 50 GPa are much greater than 1.5, the T_c values were also calculated by numerically solving the Eliashberg equation⁴⁵, which gives T_c values of 156 and 154 K with $\mu^*=0.1$, respectively.

Fig. 5 Calculated phonon dispersion curves (red circle area proportional to associated EPC), projected phonon density of states (PDOS), the Eliashberg phonon spectral function $\alpha^2 F(\omega)/\omega$ and its integral $\lambda(\omega)$ of (a) $P\overline{3}m1$ -LaBH₇ at 110 GPa, (b) $Fm\overline{3}m$ LaBH₈ at 200 GPa and (c) $Fm\overline{3}m$ -LaBH₈ at 55 GPa.

Phase	Pressure (GPa)	λ	ω _{log} (K)	T_c (K) $\mu^*=0.1-0.13$	T_c (K) $\mu^*=0.1$ Eliashberg
				McMillan	C
LaBH ₇ ($P\overline{3}m1$)	110	1.46	837	93-85	—
LaBH ₈ ($Fm\overline{3}m$)	200	0.72	1557	58-45	
	100	1.11	1189	96-84	
	55	1.97	807	115-107	156
	50	2.29	692	108-102	154

Table I. The calculated electron-phonon coupling parameter λ , phonon frequency logarithmic average ω_{\log} and critical temperature T_c ($\mu^*=0.1-0.13$) from Allen-Dynes modified McMillan and Eliashberg equations for $P\bar{3}m1$ -LaBH₇ and $Fm\bar{3}m$ -LaBH₈.

Conclusions

Density functional theory-based structure-search calculations have identified six phases in the ternary La-B-H system at pressures of 100-300 GPa that are potential targets for experimental synthesis. Most significant are the predictions of stability of H-rich $P\overline{3}m1$ -LaBH₇ at 103-223 GPa and $Fm\overline{3}m$ -LaBH₈ above 161 GPa, with the latter calculated to be dynamically stable as low as 48.3 GPa. Structural trends among these phases are observed as the H content increases. In LaBH, the B atoms form graphene-like layers, whereas in LaBH3 and LaBH4, the B atoms not only bond with each other to form zigzag chains, but bond with H atoms. In LaBH₆ and LaBH₇, there are no B-B bonds and B atoms are coordinated by Hs to form BH₄ and BH₆ units. LaBH₈ is stable in the high-symmetry $Fm\overline{3}m$ structure, in which the B atoms accommodate all the H atoms to form BH8 units. The La atom acts as an electron donor in the structures to stabilize the higher H content B-H units. Moreover, EPC calculations show that LaBH7 and LaBH8 are potential superconductors. Softening of phonons dominated by H-atom vibrations in these structures makes a large contribution to superconductivity. The estimated T_c of LaBH₇ is 93 K at 110 GPa, whereas the T_c of LaBH₈ is calculated to be as high as 156 K at 55 GPa. The expanded range of dynamical stability to low pressures together with its predicted relatively high T_c make $Fm\bar{3}m$ -LaBH₈ a promising candidate superconductor for low-pressure stabilization experiments. A similar result for LaBH₈ is reported in a paper that appeared after the present calculations were completed⁴⁶. Additional chemical substitution of these phases could be used to enhance both T_c (e.g., by electron or hole doping) or structural stability at still lower pressures. Additional theoretical work could explore potential anharmonic and quantum effects on the stability and the calculated critical temperatures^{36,37,47} The present study is thus expected to stimulate further research on ternary and more complex superconducting hydrides with high critical temperatures and expanded ranges of stability.

Computational details

The structure searches of LaB and LaBH_x (x=1-10) with simulation cells containing up to 4 formula units (f.u.) were performed at 100, 200 and 300 GPa using the particle swarm optimization technique implemented in the CALYPSO code^{48, 49}. The structural relaxations and electronic properties were calculated using density Perdew-Burke-Ernzerhof generalized functional theory with the gradient approximation as implemented in the VASP code^{50,51}. The ion-electron interaction was described by projector-augmented-wave potentials, where $5s^25p^65d^16s^2$, $2s^22p^1$ and $1s^1$ configurations were treated as valence electrons for La, B and H atoms, respectively⁵². Plane wave kinetic energy cutoff was set to 700 eV and corresponding Monkhorst-Pack (MP) k-point meshes for different structures were adopted to ensure that the enthalpy converges to 1 meV/atom. Phonon calculations were performed by using the supercell method or density functional perturbation theory (DFPT) with PHONOPY⁵³ and Quantum-ESPRESSO codes⁵⁴, respectively. Electron-phonon coupling (EPC) calculations were carried out with the Quantum-ESPRESSO code using ultrasoft pseudopotentials for all atoms. We adopted a kinetic energy cutoff of 60 Ry. $7 \times 7 \times 5$, and $9 \times 9 \times 9$ *q*-point meshes in the first Brillouin zones (BZ) were used for $P\overline{3}m1$ -LaBH₇ and $Fm\overline{3}m$ -LaBH₈, respectively. Correspondingly, we chose MP grids of $28 \times 28 \times 20$ and $36 \times 36 \times 36$ to ensure *k*-point sampling convergence.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files.

References

- 1. Ashcroft, N. W. Hydrogen Dominant Metallic Alloys: High Temperature Superconductors? *Phys. Rev. Lett.* **92**, 187002 (2004).
- 2. Wang, H., Li, X., Gao, G., Li, Y. & Ma, Y. Hydrogen-rich superconductors at high pressures. *WIREs: Comput. Mol. Sci.* **8**, e1330 (2018)
- 3. Zurek, E. & Bi, T. High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. *J Chem. Phys.* **150**, 050901 (2019).
- 4. Flores-Livas, J. A., Boeri, L., Sanna, A., Profeta, G., Arita, R.& Eremets, M. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials, *Phys. Rep.* **856**, 1-78 (2020).
- 5. Semenok, D.V., Kruglov, I. A., Savkin, I. A., Kvashnin, A. G. & Oganov, A. R. On distribution of superconductivity in metal hydrides, *Curr. Opin. Solid State Mater. Sci.* **24**, 100808 (2020).
- 6. Pickard, C. J., Errea, I. & Eremets, M. I. Superconducting hydrides under pressure, *Annu. Rev. Conden. Matter Phys.* **11**, 57-76 (2020).
- 7. Duan, D. *et al.* Pressure-induced metallization of dense $(H_2S)_2H_2$ with high- T_c superconductivity, *Sci. Rep.* **4**, 6968 (2014).
- 8. Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Y. Ma, Superconductive sodalite-like clathrate calcium hydride at high pressures, *Proc. Natl. Acad. Sci. USA* **109**, 6463-6466 (2012).
- 9. Li, Y., Hao, J., Liu, H., Tse, J. S., Wang, Y. & Ma, Y. Pressure-stabilized superconductive yttrium hydrides, *Sci. Rep.* **5**, 9948 (2015).
- 10. Liang, X. et al. Potential high-T_c superconductivity in CaYH₁₂ under pressure, *Phys. Rev. B* **99**, 100505 (2019).
- 11. Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R.J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure, *Proc. Natl. Acad. Sci. USA* **114**, 6990-6995 (2017).
- 12. Peng, F., Sun, Y., Pickard, C. J., Needs, R. J., Wu, Q. & Ma, Y. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity, *Phys. Rev. Lett.* **119**, 107001 (2017).
- Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V., Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, *Nature* 525, 73 (2015).
- 14. Einaga, M. et al. Crystal structure of the superconducting phase of sulfur hydride, *Nat. Phys.* **12**, 835 (2016).
- 15. Geballe, Z. M. et al. Synthesis and stability of lanthanum superhydrides, *Angew. Chem. Int. Ed.* **57**, 688-692 (2018).
- 16. Somayazulu, M.et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures, *Phys. Rev. Lett.* **122**, 027001 (2019).
- 17. Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures, *Nature* **569**, 528-531 (2019).
- 18. Kong, P. et al. Superconductivity up to 243 K in yttrium hydrides under high pressure arXiv:1909.10482.

- 19. Troyan, I. A. et al. Anomalous High-temperature superconductivity in YH₆, *Adv. Mater.* 2006832 (2021).
- 20. Semenok, D. V. et al. Superconductivity at 161 K in thorium hydride ThH₁₀: Synthesis and properties, *Mater. Today* **33**, 36-44 (2020).
- 21. Snider, E. et al. Room-temperature superconductivity in a carbonaceous sulfur hydride, *Nature* **586**, 373-377 (2020).
- 22. Hutcheon, M. J., Shipley, A. M. & Needs, R. J. Predicting novel superconducting hydrides using machine learning approaches, *Phys. Rev. B* **101**, 144505 (2020).
- 23. Kruglov, I. A. et al. Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity, *Sci. Adv.* **4**, eaat9776 (2018).
- 24. Guigue, B., Marizy, A. & Loubeyre, P. Synthesis of UH₇ and UH₈ superhydrides: Additive-volume alloys of uranium and atomic metal hydrogen down to 35 GPa, *Phys. Rev. B* **102**, 014107 (2020).
- 25. Salke, N. P. et al. Synthesis of clathrate cerium superhydride CeH₉ at 80-100 GPa with atomic hydrogen sublattice. *Nature Commun.* **10**, 4453 (2020).
- 26. Chen, W. et al. Synthesis of molecular metallic barium superhydride: pseudocubic BaH₁₂, *Nature Commun.* **12**, 1-9 (2021).
- 27. Cui, W. et al. Route to high-T_c superconductivity via CH₄-intercalated H₃S hydride perovskites, *Phys. Rev. B* **101**, 134504 (2020).
- 28. Sun, Y. et al. Computational discovery of a dynamically stable cubic SH₃-like high-temperature superconductor at 100 GPa via CH₄ intercalation, *Phys. Rev. B* **101**, 174102 (2020).
- Ge, Y., Zhang, F., Dias, R. P., Hemley, R. J. & Yao, Y. Hole-doped room-temperature superconductivity in H₃S_{1-x}Z_x (Z=C, Si). *Mater. Today Phys.* 15, 100330 (2020).
- 30. Kokail, C., von der Linden, W. & Boeri, L. Prediction of high- T_c conventional superconductivity in the ternary lithium borohydride system, *Phys. Rev. Mater.* **1**, 074803 (2017).
- 31. Di Cataldo, S., von der Linden, W. & Boeri, L. Phase diagram and superconductivity of calcium borohyrides at extreme pressures, *Phys. Rev. B* **102**, 014516 (2020).
- 32. Hu, C.-H. et al. Pressure-induced stabilization and insulator-superconductor transition of BH, *Phys. Rev. Lett.* **110**, 165504 (2013).
- 33. Yao, Y. & Hoffmann, R. BH₃ under pressure: Leaving the molecular diborane motif, *J. Am. Chem. Soc.* **133**, 21002-21009 (2011).
- 34. Yang, W.-H. et al. Novel superconducting structures of BH₂ under high pressure, *Phys. Chem. Chem. Phys.* **21**, 5466-5473 (2019).
- 35. Grockowiak, A. et al. Hot hydride superconductivity above 550 K, arXiv:2006.03004.
- Liu, H., Naumov, I. I., Geballe, Z. M., Somayazulu, M., Tse, J. S. & Hemley, R. J. Dynamics and superconductivity in compressed lanthanum superhydride. *Phys. Rev. B* 98, 100102 (2018).
- 37. Errea, I. et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. *Nature* **578**, 66-72 (2019).

- 38. Kruglov, I. A. et al. Superconductivity of LaH₁₀ and LaH₁₆ polyhydrides, *Phys. Rev. B* **101**, 024508 (2020).
- 39. Ma, Y. & Tse, J. S. Ab initio determination of crystal lattice constants and thermal expansion for germanium isotopes, *Solid State Commun.* **143**, 161-165 (2007).
- 40. Becke, A. D. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems, *J Chem. Phys.* **92**, 5397-5403 (1990).
- Savin, A., Jepsen, O., Flad, J., Andersen, O.K., Preuss, H. & von Schnering, H.G. Electron Localization in Solid-State Structures of the Elements: the Diamond Structure, *Angew. Chem. Int. Ed.* **31**, 187-188 (1992).
- 42. Bader, R. Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, UK, 1994).
- 43. Simon, A. Superconductivity and chemistry, *Angew. Chem. Int. Ed.* **36**, 1788-1806 (1997).
- 44. Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed, *Phys. Rev. B* **12**, 905-922 (1975).
- 45. Eliashberg, G. M. Interactions between electrons and lattice vibrations in a superconductor, *Sov. Phys. JETP* **11**, 696-702 (1960).
- 46. Di Cataldo, S., Heil, G., von der Linden, W. & Boeri, L. LaBH₈: the first high-*T_c* low-pressure superhydride, arXiv:2102.11227.
- 47. Wang, H., Yao, Y., Peng, F., Liu, H. & R. J. Hemley, Quantum and classical proton diffusion in superconducting clathrate hydrides, *Phys. Rev. Lett.* **126**, 117002 (2021).
- 48. Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization, *Phys. Rev. B* **82**, 094116 (2010).
- 49. Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: A method for crystal structure prediction, *Comput. Phys. Commun.* **183**, 2063-2070 (2012).
- 50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, *Phys. Rev. B* **54**, 11169-11186 (1996).
- Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J. & Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, *Phys. Rev. B* 46, 6671-6687 (1992).
- 52. Blöchl, P. E. Projector augmented-wave method, *Phys. Rev. B* **50**, 17953-17979 (1994).
- Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl₂-type SiO₂ at high pressures, *Phys. Rev. B* 78, 134106 (2008).
- 54. Paolo, G. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, *J. Phys.: Condens. Matter* **21**, 395502 (2009).

Acknowledgements

The work was supported by National Natural Science Foundation of China (No. 52022089, 12074138), and the Ph.D. Foundation by Yanshan University (Grant No.

B970). A.B. acknowledges financial support from the Spanish Ministry of Science and Innovation (Grant No. FIS2019-105488GB-I00). R.H. acknowledges support from the U.S. National Science Foundation (DMR-1933622).

Author contributions

G.G. conceived this project. X.L, X.W., L.W. and R.S. performed the calculations and analysis. X.L., A.B., H.L., R.J.H., L.W., G.G. and Y.T. wrote and revised the paper. All the authors discussed the results and offered useful inputs.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at ***.

Correspondence and requests for materials should be addressed to G.G. or H.L.