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Abstract

The accurate modeling of spin-orbit coupling (SOC) effects in diverse complex systems remains a signifi-
cant challenge due to the high computational demands of density functional theory (DFT) and the limited
transferability of existing machine-learning frameworks. This study addresses these limitations by intro-
ducing Uni-HamGNN, a universal SOC Hamiltonian graph neural network that is applicable across the
periodic table. By decomposing the SOC Hamiltonian into spin-independent and SOC correction terms,
our approach preserves SU(2) symmetry while significantly reducing parameter requirements. Based on
this decomposition, we propose a delta-learning strategy to separately fit the two components, thereby
addressing the training difficulties caused by magnitude discrepancies between them and enabling efficient
training. The model achieves remarkable accuracy (mean absolute error of 0.0025 meV for the SOC-related
component) and demonstrates broad applicability through high-throughput screening of the GNoME
dataset for topological insulators, as well as precise predictions for 2D valleytronic materials and transition
metal dichalcogenide (TMD) heterostructures. This breakthrough eliminates the need for system-specific
retraining and costly SOC-DFT calculations, paving the way for rapid discovery of quantum materials.
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1 Introduction

The spin-orbit coupling (SOC) effect has emerged as a cornerstone of spintronics, enabling all-electrical
control of spin states without requiring external magnetic fields[1, 2]. This interaction underpins trans-
formative quantum phenomena and devices, such as the spin Hall effect (SHE)[3], topological insulators
(TIs)[4–7], valleytronics[8, 9], and the spin field-effect transistors (SFT)[10]. SOC-driven mechanisms offer
unprecedented opportunities for low-dissipation spin manipulation and topological quantum materials design,
making precise calculation of SOC electronic structures indispensable for advancing next-generation elec-
tronic devices[10, 11]. Despite its fundamental importance, accurately modeling SOC effects in large systems
remains computationally prohibitive for DFT, creating a bottleneck in the design of next-generation quantum
materials.

Recent advancements in data-driven Hamiltonian parameterization may provide new solutions to the
long-standing challenges[12–19]. By constructing direct mappings from atomic environments to Hamilto-
nian matrices, these models bypass the computationally expensive self-consistent field (SCF) iterations in
DFT, enabling efficient predictions of electronic structures. Recently, a spinless universal Hamiltonian model
applicable to arbitrary element combinations has been reported[20]. This model successfully addresses the
challenges of extrapolating to new material systems and eliminates the need for resource-intensive re-training
for each new composition. However, the development of a universal SOC Hamiltonian model still encoun-
ters three major challenges that require careful attention and innovative solutions: First, generating SOC
Hamiltonian training sets involves computationally intensive DFT calculations that include SOC, which are
approximately eight times slower than their non-SOC counterparts. Second, incorporating SOC transforms
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Hamiltonians into complex-valued matrices with quadrupled dimensions, dramatically expanding the param-
eter space. Third, the two-orders-of-magnitude disparity between SOC and non-SOC matrix elements can
lead to training instability, as conventional neural networks struggle to discern the subtle contributions of
SOC in the presence of dominant spin-independent terms.

Our work addresses these challenges through a physics-informed decomposition strategy that sepa-
rates SOC Hamiltonians into spin-independent components and symmetry-preserving correction terms. This
method not only reduces the number of required parameters but also rigorously maintains SU(2) symme-
try, thereby enabling a delta-learning framework capable of independently optimizing magnitude-disparate
terms in separate channels. Building upon this foundation, we integrate the dual-channel framework with
HamGNN-V2, an enhanced graph neural network architecture that extends HamGNN by incorporating opti-
mized convolutional layers. The resulting universal SOC Hamiltonian model, termed Uni-HamGNN, was
trained using a resource-efficient dataset containing only 10,000 SOC matrices supplemented by 40,000 com-
putationally economical non-SOC matrices. Using Uni-HamGNN, we conducted high-throughput screening of
topological insulators within the GMoME dataset containing 300,000 inorganic crystal structures, showcasing
the model’s efficiency and accuracy in identifying topological materials. Further validation on two-dimensional
materials demonstrates that Uni-HamGNN exhibits high accuracy in predicting SOC electronic structures in
valleytronic materials and bilayer transition metal dichalcogenide (TMD) heterostructures, illustrating the
model’s broad applicability and high transferability across different dimensional material systems. These suc-
cessful applications indicate that Uni-HamGNN holds promise as a revolutionary tool for quantum material
design and property research, advancing the cutting-edge study of condensed matter physics and materials
science to new heights.

2 Results

2.1 Physics-Informed Framework for Parameterizing the SOC Hamiltonian

The electronic Hamiltonian matrix comprises a substantial number of elements that encode interactions and
energy information between orbitals of distinct atoms within a system. For the spinless Hamiltonian H0,
its parameterization typically leverages its equivariant constraint under the SO(3) rotation operation, repre-
senting it as a set of learnable irreducible spherical tensors (ISTs)[17, 21]. However, introducing SOC effects
fundamentally alters the Hamiltonians complexity. The SOC Hamiltonian transforms into a complex-valued
matrix of dimensions 2Norb × 2Norb, where Norb denotes the number of localized orbitals. This expansion—
driven by the inclusion of spin degrees of freedom—quadruples the matrix dimensions relative to the spinless
case, while the transition to complex matrices further doubles the number of elements. A conservative esti-
mate suggests that adopting an analogous parameterization approach for the SOC Hamiltonian would require
approximately eight times as many parameters as the spinless case. Additionally, the SOC Hamiltonian
must simultaneously satisfy rotational symmetry constraints for both orbital angular momentum (l) and spin
angular momentum (s), leading to the SU(2) transformation rule in the spin-orbit basis:

HSOC = D(l)(Q)⊗D(1/2)(Q) ·HSOC ·
[
D(l)(Q)⊗D(1/2)(Q)

]†
(1)

Here, D(l)(Q) and D(1/2)(Q) denote the Wigner rotation matrices associated with orbital and spin angular
momentum[22], respectively, under the rotation Q ∈ SO(3). The combination of high-dimensional parame-
terization and SU(2) symmetry constraints presents a formidable challenge for constructing a universal SOC
Hamiltonian model applicable across the periodic table.

By shifting our focus to the physical interpretation of the SOC effect, we can identify more straightforward
parameterization approaches for the SOC Hamiltonian. The classical interpretation attributes SOC to the
interaction between the electron’s spin magnetic moment µ⃗ and the effective magnetic field B⃗ from its orbital
motion, yielding an energy correction −µ⃗ · B⃗. This manifests quantum mechanically as a Hamiltonian term
Hsoc ∼ L⃗ · σ⃗, where L⃗ is the orbital angular momentum operator and σ⃗ the Pauli spin vector. The total
Hamiltonian thus decomposes into spin-independent (H0) and SOC-dependent (Hsoc) terms:

H0 ⊗ I2 +Hsoc (2)

Here, I2 is the 2× 2 identity matrix. The SOC term is explicitly parameterized as[23]:

Hsoc = ξ
̂⃗
L · ̂⃗σ = ξ

(
L̂xσ̂x + L̂yσ̂y + L̂zσ̂z

)
(3)

where ξ quantifies the SOC strength. Note that the non-SOC part, H0, is always real, whereas Hsoc contains
both real and imaginary components. This formulation not only clarifies the spin-orbit coupling mechanism
but also enables a tractable parameterization in the atomic orbital basis {ϕi, ϕj}:
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Fig. 1 The framework for parameterizing spin-orbit coupling (SOC) Hamiltonians using graph neural net-
works (GNNs). The GNN effectively encodes atomic species, bond orientations, and bond lengths within crystal structures,
performing graph convolution through equivariant tensor product operations based on these features. At the output stage, the
model constructs two components based on the learned features: the spin-independent Hamiltonian matrix H0 and the spin-

orbit coupling term ξ
̂⃗
L · ̂⃗σ, where ξ denotes the SOC strength factor,

̂⃗
L represents the orbital angular momentum operator, and̂⃗σ corresponds to the Pauli matrices. The complete SOC Hamiltonian matrix, obtained by summing these components, describes

electronic structures under SOC effects. This framework enables systematic investigation of diverse SOC-related quantum phe-
nomena, including valley degree of freedom manipulation in valleytronics, spin current mechanisms in the spin Hall effect (SHE)
and quantum spin Hall effect (QSHE), unique spin textures induced by Rashba SOC, operational mechanisms of spin field-effect
transistors (Spin-FETs), and distinctive physical properties of topological insulator (TI) surface states. These applications rely
on precise characterization and modulation of SOC effects in materials, and the framework offers an efficient and accurate mod-
eling approach to achieve these goals.

H
sisj
ij =


H0

ij +
1
2ξij ⟨ϕi| L̂z |ϕj⟩ si =↑, sj =↑

1
2ξij

(
⟨ϕi| L̂x |ϕj⟩ − i ⟨ϕi| L̂y |ϕj⟩

)
si =↑, sj =↓

1
2ξij

(
⟨ϕi| L̂x |ϕj⟩+ i ⟨ϕi| L̂y |ϕj⟩

)
si =↓, sj =↑

H0
ij − 1

2ξij ⟨ϕi| L̂z |ϕj⟩ si =↓, sj =↓

(4)

The parameterization in Eq. (4) significantly reduces the modeling burden by depending on two key
components: analytically computable orbital angular momentum matrix elements ⟨ϕi|L̂α|ϕj⟩ (α = x, y, z)
and learnable coefficients ξij . Our framework systematically incorporates both on-site (j = i) and off-site
(j ̸= i) SOC contributions into the Hamiltonian matrix, ensuring robust performance across diverse material
systems—including those dominated by heavy elements. This approach contrasts with the empirical tight-
binding framework, where SOC is conventionally treated under the on-site approximation, considering only
the one-center term Hii

SOC[23, 24]. While this simplification suffices for systems with moderate SOC effects,
it becomes inadequate for heavy-element systems, such as those involving 5d transition metals, where two-
center SOC terms play a critical role[25, 26]. By explicitly including these contributions, our model captures
the full complexity of spin-orbit interactions in materials with strong relativistic effects.

Building on this physics-grounded parameterization, we develop a universal SOC Hamiltonian parameteri-
zation framework using graph neural networks (GNNs), as illustrated in Fig. 1. The GNN architecture encodes
atomic species, bond orientations, and interatomic distances, mapping them through tensor-product convo-
lutions to both the spin-independent Hamiltonian H0

ij and SOC strength ξij . Training across diverse crystal
structures endows the model with robust generalization capabilities, allowing for accurate SOC Hamiltonian
predictions even in previously unseen materials and thereby facilitating efficient modeling of SOC-related
quantum effects across a variety of complex systems.

To implement this parameterization framework, we develop HamGNN-V2—an enhanced version of the
original HamGNN[17] architecture that recently achieved a spin-less universal Hamiltonian model[20]. As
illustrated in Fig. 2a, the architecture of HamGNN-V2 features a hierarchical graph neural network that
processes crystal structures through a sequence of orbital convolution, self-interaction, and pair interaction
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Fig. 2 HamGNN-V2 architecture and the illustration of its subnetworks. a Network architecture: Initial atom

features V
(0)
i are one-hot encoded by element. Bond lengths are embedded via Bessel functions B (∥rij∥), and orientations via

spherical harmonics Y (r̂ij). The initial edge feature vector P
(0)
ij is constructed by combining the features of terminal atoms,

bond length, and directional information (see panel b). The network recursively updates atomic features V
(t)
i and edge features

P
(t)
ij through T layers of orbital convolution, self-interaction, and pair interaction operations. The output layer constructs the

non-SOC Hamiltonian matrix H0 and the SOC strength factor ξ from the final features. b Edge initialization: P
(0)
ij combines

one-hot atom encodings and spherical harmonics of the bond through tensor products. c Orbital convolution: Updates atom

features via message-passing, using concatenated atomic V
(t)
i ∥ V

(t)
j and edge features P

(t)
ij with tensor products to capture

atomic orbital characteristics under different rotational orders. d Self-interaction: MACE self-interaction layer models higher-

order interactions between atomic orbitals across rotational orders l. e Pair interaction: Updates P
(t)
ij via tensor products of

V
(t)
i ∥ V

(t)
j and edge features P

(t)
ij , integrating local chemical environments. f Residual layers: Apply nonlinear transformations

to atomic features with shortcut connections to enhance representational capacity and training stability.

layers. This neural network inputs a graph representation of a crystal, with each atom represented as a node
and each chemical bond as an edge linking two nodes. An initial one-hot vector based on elemental type

is constructed for each atom, noted as V
(0)
i . Bond geometric properties, embedded using a set of Bessel

functions, yield the bond-length embedding vector B (|rij |), while spherical harmonics Y (r̂ij) capture bond
directionality. By integrating initial atomic features with bond-length and directional embeddings, the initial

edge feature vector P
(0)
ij is formed (see Fig. 2b).

Following input feature initialization, the network employs tensor-product-based convolution operations
and a message-passing mechanism to update atomic and bond features iteratively (Fig. 2c). After each con-

volutional layer, the atomic and bond features are refined to V
(t)
i and P

(t)
ij respectively, where t represents

the convolutional layer’s depth. The incorporation of self-interaction layers (Fig. 2d) from MACE[27] further
enhances HamGNN-V2, specifically designed to capture interactions between orbital features of varying rota-
tional orders l, thus providing high-order features for the orbital convolution layers. The network recursively
updates atomic features and edge features through T layers of orbital convolution layers, self-interaction lay-
ers, and pair interaction layers (Fig. 2e). Within these layers, we utilize an optimized tensor product operation
(detailed in the Methods section), cutting down the required network parameters to 1

Np
+ 1

Cx
relative to the

traditional tensor product operation, where Np and Cx stand for the respective total tensor-product paths
and feature channels. This innovation curtails computational resource demand while preserving the model’s
expressive power. Ultimately, the output layer maps these two features to the non-SOC Hamiltonian matrix
H0 and the SOC strength factor ξ, thereby constructing the complete SOC Hamiltonian matrix.
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Fig. 3 Overview of the dataset and training framework. a Schematic of the delta-learning framework for the Universal
SOC Hamiltonian Model (Uni-HamGNN). b Element count in the whole training dataset. c Comparison between Uni-HamGNN-
predicted real components of SOC Hamiltonians (HSOC

real ) and density functional theory (DFT)-computed values on the test

set. d Comparison between Uni-HamGNN-predicted imaginary components of SOC Hamiltonians (HSOC
imag) and DFT-computed

values on the test set.

2.2 Delta Learning of SOC Hamiltonian

After incorporating the spin degree of freedom, DFT calculations with SOC become substantially more
computationally intensive compared to non-SOC DFT calculations. Consequently, constructing a training
dataset for SOC Hamiltonians represents a highly demanding computational task. An additional challenge
arises from the disparity in magnitude between the non-SOC and SOC terms; the non-SOC term often
reaches tens of eV, while the SOC term usually amounts to only a few tenths of an eV. However, despite its
smaller magnitude, the SOC term has a profound impact on the electronic structure and material properties,
underscoring the difficulty of accurately fitting both terms given their significant amplitude difference.

To address this issue, we propose a delta-learning method to train HamGNN-V2 model by separately
learning the two components in distinct channels, as illustrated in Fig. 3a. This allows us to utilize a large
training set of non-SOC Hamiltonians, which are generated at a lower computational cost, to fit H0, while
requiring only a small subset of the imaginary parts of SOC Hamiltonian matrices to train the parameter ξ.
This approach effectively prevents the loss value associated with the SOC term from being overshadowed or
lost during the simultaneous training of all terms. In our study, we employed a dataset comprising non-SOC
Hamiltonians derived from 44,000 structures in the Materials Project[28] database to train H0. Meanwhile,
the imaginary parts of SOC Hamiltonians extracted from approximately 10,000 structures were utilized as
training targets for fitting ξ. These collected structures encompass nearly all commonly used elements across
the periodic table. As shown in Fig. 3b, the elemental distribution within the dataset spans most of the
periodic table, ensuring broad chemical diversity.

Having established a partitioned training approach for Hamiltonian components, it is important to note
that accurate Hamiltonian reconstruction constitutes merely the first step toward achieving reliable band
structure prediction. Directly incorporating band energy errors into the loss function can lead to optimization
instabilities, as the gradient related to the eigenvalues of the Hamiltonian matrix with insufficient accuracy
may diverge. We therefore adopt a two-stage training protocol (detailed in Methods) that first optimizes
Hamiltonian fidelity before refining eigenvalue consistency. This sequential prioritization enhances numerical
stability while preserving physical rigor.

An additional consideration for a universal model trained on diverse crystals is the handling of intrinsic
variances in the zero points of DFT potential energy across different structures. Uncorrected, these system-
dependent offsets introduce spurious translation terms into the Hamiltonian and eigenvalues, compromising
predictions. To mitigate this, we systematically subtract the zero-point energy for each crystal using correction
formulas provided in Methods. This renormalization step ensures that the training process focuses on physi-
cally meaningful energy differences rather than arbitrary absolute shifts, bolstering the models transferability
across materials.
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2.3 Performance evaluation on the test set

To systematically assess the generalization capability of our trained universal SOC Hamiltonian model, we
constructed an independent test set comprising 5,000 materials spanning diverse chemical compositions and
crystal structures. For these systems, we calculated both the ground-truth SOC Hamiltonian matrices and
their model-predicted counterparts. The model exhibited strong predictive accuracy, achieving a mean abso-
lute error (MAE) of 3.58 meV for the real part of the whole SOC Hamiltonian (HSOC

real ) and an exceptionally
low MAE of 0.0025 meV for the imaginary component (HSOC

imag). These results confirm that our parameteri-
zation approach effectively quantifies SOC interactions with high fidelity. The parity plots in Figs. 3c and 3d
further corroborate this conclusion, demonstrating excellent agreement between predicted and DFT-computed
matrix elements across both real and imaginary components.

After confirming the model’s overall predictive accuracy, we conducted detailed analyses on four represen-
tative heavy-element systems from the test set to further assess the model’s reliability in complex scenarios:
ZrSiPt, Ca3(SiIr)4, Ta3AlC2, and Na2BiPCO7. These materials were specifically chosen due to their pro-
nounced SOC effects, which impose stringent demands on predictive accuracy. For the real components, the
MAEs remained remarkably low at 1.29 meV, 1.82 meV, 1.51 meV, and 1.22 meV, respectively. The MAEs for
the imaginary parts were found to be minuscule, at 0.0038 meV, 0.0017 meV, 0.0034 meV, and 0.0022 meV,

Fig. 4 The prediction of Uni-HamGNN on several periodic solids that are not present in the training sets.
a–d Crystal structures of ZrSiPt, Ca3(SiIr)4, Ta3AlC2, and Na2BiPCO7. e–h Comparison of the Hamiltonian matrix elements
predicted by Uni-HamGNN and those calculated by OpenMX for ZrSiPt, Ca3(SiIr)4, Ta3AlC2, and Na2BiPCO7. i–l Comparison
of the energy bands predicted by Uni-HamGNN (solid line) and those (dashed line) calculated by OpenMX for ZrSiPt, Ca3(SiIr)4,
Ta3AlC2, and Na2BiPCO7.
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Fig. 5 High-throughput topological insulator screening framework based on Uni-HamGNN. a Schematic illustrat-
ing the calculation of Z2 topological invariants using Wannier function-based methods versus the machine-learned Hamiltonian
approach. b Workflow for high-throughput Z2 topological insulator screening within the GNoME materials database. c–e
Schematic crystal structures of HfZr3P4IrRh3 (c), SrGa2IrRh (d), and SrAs12Ru3Pt (e). f–h Comparison between Uni-
HamGNN-predicted and DFT-calculated band structures with SOC for HfZr3P4IrRh3 (f), SrGa2IrRh (g), and SrAs12Ru3Pt
(h).

respectively. This consistency across chemically distinct systems highlights the models capability to resolve
subtle SOC-induced energy splits—a prerequisite for applications in spintronics and topological materials.

To validate the physical meaningfulness of these predictions, we compared the model’s band structure
calculations against full DFT results. As illustrated in Fig. 4, the universal model reproduces key SOC-
induced features with exceptional accuracy, including band gap evolution, spin splitting patterns, and edge
state modifications. Validations on more heavy-element systems are provided in the Supplementary Materials.
The high accuracy demonstrated for Hamiltonian components, along with the excellent agreement with DFT-
derived band structures, confirms the model’s robustness and broad applicability in precisely describing
SOC-related physical properties across a wide variety of complex material systems.

2.4 High-Throughput Topological Insulator Screening

Topological insulators (TIs) exhibit nontrivial topological properties primarily due to SOC effect. Crucially,
SOC drives topological phase transitions through band inversion, governs spin-momentum locking in surface
states, and underpins their distinctive quantum behavior[4, 7, 29]. To distinguish TIs from trivial insulators,
the Z2 invariant—a topological index defined for non-magnetic systems with time-reversal symmetry—serves
as a key discriminator. The Z2 values of 0 and 1 correspond to trivial and nontrivial topological phases,
respectively. Within the tight-binding framework, the Z2 invariant is often evaluated across a series of 2D
time-reversal invariant planes to characterize the band topology of three-dimensional materials. For a given
2D plane, the Z2 invariant is expressed as[30]:

Z2 =
1

2π

occ.∑
n

(∫
∂B

An · dk −
∫
B

Ωαβ
n dkαdkβ

)
(mod 2) (5)

Here,An = −i⟨unk| ∂
∂k |unk⟩ represents the Berry connection, whileΩn = ∇×An denotes the Berry curvature.

unk = e−ik·rψnk is the lattice-periodic Bloch wavefunction. In three-dimensional systems, the Brillouin zone
contains six time-reversal invariant planes (ki = 0 and ki = Gi

2 for i = 1, 2, 3), yielding six Z2 invariants
(x0, xπ, y0, yπ, z0, zπ).
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Fig. 6 Comparison of SOC band structures and Berry curvature distributions for WSeS calculated by Uni-
HamGNN vs DFT. a SOC band structure of WSeS computed via Uni-HamGNN. b Berry curvature distribution of WSeS
computed via Uni-HamGNN. c SOC band structure of WSeS calculated by DFT. d Berry curvature distribution of WSeS
calculated by DFT.

While the Z2 framework provides a rigorous classification scheme, determining these invariants experimen-
tally or computationally remains challenging. The conventional approach involves constructing tight-binding
models from Wannier functions[31, 32], which demands substantial computational resources and iterative
parameter tuning (Fig. 5a). This method, though widely adopted, becomes impractical for large-scale mate-
rial screening. A more efficient alternative lies in employing a universal SOC Hamiltonian model, which
bypasses the need for expensive DFT calculations and Wannier basis construction. By directly providing the
real-space SOC Hamiltonian matrix, this approach enables rapid computation of topological invariants such
as the Z2 index.

To leverage these computational advantages, we performed high-throughput screening of 10,170 heavy-
element (Z > 70) materials from the GNoME[33] dataset using Uni-HamGNN. Heavy elements were
prioritized due to their pronounced SOC effects, which strongly influence topological phase transitions. Fig.
5b outlines our screening workflow: After identifying 1,383 insulating candidates with band gaps ≤ 0.3 eV—
a range where SOC-induced band inversions are more likely to produce nontrivial states—we computed Z2

invariants for these materials. This process revealed 120 topological insulators, demonstrating the methods
efficacy in discovering novel TI candidates.

Three representative systems from this set—HfZr3P4IrRh3, SrGa2IrRh, and SrAs12Ru3Pt—illustrate the
predictive power of our approach (Figs. 5c–e). Their SOC band structures, calculated via both the universal
model and DFT methods (Figs. 5f–h), show remarkable agreement, validating the models accuracy. The
predicted Z2 indices (0, 0, 1, 0, 1, 0), (1, 0, 1, 0, 0, 0), and (1, 0, 1, 0, 1, 0) were further confirmed throughWannier
charge center evolution analysis using VASP (see Supplementary Materials). This consistency between model
predictions and independent DFT-based verification not only underscores the reliability of our universal
Hamiltonian approach but also establishes its potential as a powerful tool for accelerated TI discovery.

2.5 2D Valleytronics and heterostructure

While Uni-HamGNN is trained on three-dimensional (3D) bulk materials from the Materials Project database,
its exceptional transferability enables the model to accurately calculate the SOC electronic structures of two-
dimensional (2D) materials. This capability positions Uni-HamGNN as a highly efficient and reliable tool for
exploring the electronic structures, topological properties, and other characteristics of 2D materials, including
2D valleytronics materials and bilayer heterostructures.

Valleytronics uses the “valleys” in the electronic band structure of solids as new degrees of freedom for
information encoding, enabling lower energy consumption for data storage and transmission compared to tra-
ditional charge or spin-based devices[8, 9]. However, realizing practical valleytronic devices requires materials
with stringent characteristics: multiple inequivalent valleys, direct bandgaps, and strong spin–orbit coupling
to enable spin-valley locking. Addressing these challenges demands high-throughput screening tools to accel-
erate the discovery of viable candidates. In this work, we leverage Uni-HamGNN to predict SOC Hamiltonians
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Fig. 7 Comparison of spin-orbit coupling (SOC) band structures between Uni-HamGNN and DFT calculations
for bilayer heterostructures of transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te).

Fig. 8 Comparison between Uni-HamGNN and DFT calculations for the MoSe2-WSe2 bilayer with a twist
angle of 21.79◦. a Spin-projected band structures computed by Uni-HamGNN and b corresponding DFT results. c Orbital
contribution distributions of MoSe2-WSe2 in the band structures predicted by Uni-HamGNN and d those calculated by DFT.
e Charge density distributions at the valence band maximum (VBM) and conduction band minimum (CBM) predicted by Uni-
HamGNN. f Computational time comparison between Uni-HamGNN and DFT for MoSe2-WSe2 bilayers with varying twist
angles using 64 CPU cores.

for non-centrosymmetric 2D materials from the C2DB database[34, 35], such as WSeS, Ge3Bi2O9, InSeS3,
TaAgP2Se6, and PbCl2. From these predictions, we derived band structures and Berry curvature distribu-
tions across the first Brillouin zone. As exemplified by the Janus material WSeS in Fig. 6, Uni-HamGNN
achieves excellent agreement with DFT in both SOC band structures (Figs. 6a and 6c) and Berry curvature
profiles (Figs. 6b and 6d). The models spin-projection results align closely with DFT, confirming its accuracy
in resolving spin-valley locking. Notably, the Berry curvature extrema at opposing valleys—critical for val-
ley polarization—are precisely captured, underscoring Uni-HamGNN’s ability to resolve subtle SOC-driven
phenomena.

Expanding beyond monolayer systems, we investigated interfacial SOC effects in bilayer TMD heterostruc-
tures. Interlayer coupling in stacked TMDs can renormalize band edges and spin splittings—effects critical
for tailoring quantum transport. As Fig. 7 illustrates, Uni-HamGNN faithfully reproduces DFT-derived band
structures (solid vs. dashed lines) across all MX2 (M = Mo, W; X = S, Se, Te) combinations, highlighting
the model’s capacity to simulate interfacial quantum phenomena with first-principles fidelity.

To further validate the robustness of Uni-HamGNN, we examined twisted bilayer systems, which not
only exhibit intricate electronic structures but also impose significant computational challenges, especially for
small-angle twisted configurations. As a representative case, we focused on twisted MoSe2-WSe2 bilayers and
calculated their band structures across varying twist angles using Uni-HamGNN. Figs. 8a and 8b present a
direct comparison between the spin-projected band structures predicted by Uni-HamGNN and those obtained
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from DFT calculations, revealing strikingly consistent electronic features across both methodologies. Beyond
band structure agreement, we analyzed the layer-specific orbital contributions to validate the model’s physical
interpretability. As illustrated in Figs. 8c and 8d, the orbital weights attributed to MoSe2 and WSe2 layers—
derived from both Uni-HamGNN and DFT—show excellent quantitative alignment. Notably, this consistency
extends to the spatial charge distribution characteristics, as illustrated in Fig. 8e. The holes at the valence
band maximum (VBM) are primarily distributed in the WSe2 layer, and the electrons at the conduction
band minimum (CBM) are mainly located in the MoSe2 layer.

Beyond accuracy, the computational efficiency of Uni-HamGNN represents a transformative advantage.
Fig. 8f quantifies the dramatic reduction in computation time compared to DFT across different twist angles.
Specifically, Uni-HamGNN achieves speedups of 2–3 orders of magnitude while maintaining high fidelity.
Such efficiency gains establish the method as a practical and powerful tool for high-throughput exploration
of quantum materials, where traditional DFT calculations are hindered by prohibitively high computational
costs.

3 Discussion

This study introduces a universal machine-learning framework (Uni-HamGNN) for predicting SOC Hamil-
tonians across the periodic table. By decomposing the SOC Hamiltonian into spin-independent and SOC
correction terms, our approach preserves SU(2) symmetry while significantly reducing computational com-
plexity. Building on this decomposition, we develop a delta-learning strategy that leverages abundant
non-SOC Hamiltonian data alongside sparse SOC datasets, effectively lowering the training cost and difficulty
of constructing a universal model. Rigorous validation against DFT calculations on a test set of 5,000 materi-
als confirms Uni-HamGNN’s high precision, robustness, and reliability. Furthermore, the framework’s utility
in high-throughput screening is demonstrated through its successful identification of topological insulators
and its applications to valleytronic materials and TMD heterostructures. These results represent a meaning-
ful leap forward in quantum material design, offering a computationally efficient alternative to conventional
DFT-based approaches.

The enhanced transferability of Uni-HamGNN—compared to prior machine-learning methods restricted
to specific material system—stems primarily from its delta-learning strategy and two-stage training proto-
col. The delta-learning approach addresses the inherent challenge of training a universal model caused by the
orders-of-magnitude disparity between non-SOC terms and SOC corrections, thereby simplifying model com-
plexity and enabling large-scale training across diverse materials. Importantly, even when the Hamiltonian
itself achieves low prediction errors, the corresponding band structure may still exhibit significant deviations
without proper regularization. This issue is resolved by our two-stage training method, which incorporates
band structure errors in k-space as a regularization term during fine-tuning. This step not only mitigates
overfitting but also steers the predicted Hamiltonian toward physically meaningful configurations, ensuring
consistency between the Hamiltonian and its derived electronic properties.

While Uni-HamGNN demonstrates significant advantages, practical implementation considerations must
be addressed. Universal models typically require large parameter counts to achieve high accuracy, posing
challenges for deployment on low-memory GPUs. Although such models surpass dedicated single-system
models in generalizability, their computational demands remain substantial. Recent advances in model distil-
lation techniques offer a promising solution: by compressing the universal model via knowledge distillation,
we can generate lightweight, efficient variants compatible with resource-constrained hardware. Beyond com-
putational optimization, extending Uni-HamGNN to magnetic systems represents a critical frontier. The
delta-learning framework and two-stage training methodology proposed here provide a natural pathway for
this extension. Specifically, the magnetic Hamiltonian could be decomposed into non-magnetic and magnetic
correction terms, analogous to our treatment of SOC effects. Integrating this decomposition with the current
training strategy would enable a unified framework for predicting both SOC and magnetic Hamiltonians,
significantly broadening the scope of quantum material simulations.

4 Methods

4.1 Network hyperparameters

The equivariant node features are constructed through a combination of irreducible representations with
specified rotational orders (l) and parity symmetries. Specifically, the feature composition follows: 640e +
640o + 321o + 161e + 122o + 252e + 183o + 93e + 44o + 94e + 45o + 45e + 26e. Here, “640e” denotes 64
feature channels, where each channel corresponds to an O(3) irreducible representation with rotational order
l = 0 and odd parity. To encode atomic identity, each atom is represented as a one-hot vector of length 128
based on its atomic number. For spatial embedding, interatomic directions are projected onto a basis of real
spherical harmonics with a maximum rotational order of lmax = 5.
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The Uni-HamGNN architecture integrates T = 3 orbital convolution layers, self-interaction layers, and
pairwise interaction layers. The atomic neighborhood for each atom is defined by a cutoff radius aligned with
the spatial extent of its atomic orbital basis. To ensure smooth radial representations, interatomic distances
are expanded using 128 Bessel basis functions:

B (∥rij∥) =
√

2

rc

sin
(

nπ∥rij∥
rc

)
∥rij∥

fcutoff (∥rij∥) (6)

Here, fcutoff is a cosine truncation function[36] that enforces continuity for atoms near the cutoff boundary.

To generate scalar weight coefficients S
(lxlf lo)
co (∥rij∥) for tensor product operations, the radial basis B (∥rij∥)

is processed through a two-layer multilayer perceptron (MLP) with 128 neurons per layer.

4.2 Optimization of Tensor Product Operations

In the orbital convolution and pair interaction layers of the network, atomic and bond features are updated
via tensor-product operations. These operations not only constitute the majority of the network parameters
but also play a critical role in determining both computational efficiency and model expressiveness. Generally,
tensor-product convolution can be represented by the following expression[37, 38]:

M ij
c0lomo

=

Np∑
(lxlf lo)

Cx∑
cx

{
S
(lxlf lo)
cxco (∥rij∥)

×
lx∑

mx=−lx

lf∑
mf=−lf

(
C

lxlf lo
mxmfmo mcxlxmx Y (r̂ij)lfmf

)} (7)

In this formula, mcxlxmx encodes either the atomic features V i
cxlxmx

∥ V j
cxlxmx

or the bond features

P ij
cxlxmx

. The notation (lxlf lo) enumerates all valid tensor-product paths lx ⊗ lf → lo, where Np rep-

resents the total number of such paths. The radial function S
(lxlf lo)
cxco (|rij |) = MLP (B (|rij |)) generates

channel-dependent scalar weights through a multilayer perceptron (MLP), while C
lxlf lo
mxmfmo denotes the

Clebsch-Gordan coefficients governing rotational order coupling.
While the tensor product described in Eq. (7) is widely utilized in many equivariant networks, its com-

putational demands become prohibitive for a universal Hamiltonian model. This complexity stems from the
need for a universal model to incorporate a broad range of atomic feature channels (i.e., large Co and Cx) to
improve expressiveness and generalization. Furthermore, in the context of a Hamiltonian matrix model, the
rotational order l can reach up to 5 or 6, leading to a substantial increase in the number of tensor-product
paths (Np). Consequently, the volume of learnable parameters in Eq. (7) expands rapidly, proportional to
Np × Co × Cx, placing a heavy burden on GPU memory. To mitigate this computational challenge, we have
refined Eq. (7) by adopting an optimized tensor-product format in HamGNN-V2:

M ij
c0lomo

=

Np∑
(lxlf lo)

S
(lxlf lo)
co (|rij |)

Cx∑
cx

lx∑
mx=−lx

lf∑
mf=−lf(

Wcocx

(
C

lxlf lo
mxmfmo mcxlxmx Y (r̂ij)lfmf

)) (8)

In Eq. (8), the tensor-product of mcxlxmx and Y (r̂ij)lfmf
is first linearly transformed via a weight matrix

Wcocx , which maps the input channel dimension Cx to the output channel dimension Co. Subsequently,

an equivariant scaling is applied to each tensor-product path using a scalar coefficient S
(lxlf lo)
co (|rij |). This

modification substantially decreases the number of learnable parameters. Specifically, the parameter count

for Wcocx is Co × Cx, and the parameter count for S
(lxlf lo)
co (|rij |) is Np × Co. Compared to Eq. (7), the

total number of parameters required by Eq. (8) is only 1
Np

+ 1
Cx

of the former, thus significantly reducing

computational resource demands while preserving the model’s expressiveness.

4.3 Zero-point renormalization

In different unit cells, the zero point of potential energy may vary, leading to a translation term between the
model-predicted Hamiltonian H̃ and the DFT-computed Hamiltonian H: H̃ = H+θ ·S, where θ is a constant
and S is the overlap matrix. This translation term can interfere with the training process and must therefore
be eliminated. To mitigate the impact of the zero-point drift on the training of the real-space Hamiltonian,
we applied the following correction to the model-predicted Hamiltonian H̃:
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H̃ ′ = H̃ −

∑
ij

(
H̃ij −Hij

)
∑
ij

Sij
Sij (9)

Additionally, the zero-point drift in potential energy can introduce a constant shift between the model-
predicted band eigenvalues Ẽnk and the DFT-computed band eigenvalues Enk. To address this issue, we
corrected the predicted band eigenvalues using the following formula:

Ẽ′
nk = Ẽnk − 1

NkNb

(
Ẽnk − Enk

)
(10)

4.4 Two-stage training protocol

Directly incorporating band energy errors into the loss function can lead to optimization instabilities, as
gradients derived from the eigenvalues of an inaccurately predicted Hamiltonian matrix may diverge. To
circumvent this challenge while maintaining physical consistency, we implement a two-stage training protocol
that systematically prioritizes Hamiltonian fidelity before refining eigenvalue agreement. This hierarchical
approach ensures stable gradient propagation while aligning predictions with both real-space and reciprocal-
space observables.

In the first training stage, the loss function was defined as the error between the model-predicted real-space
Hamiltonian H̃ ′ and the DFT-computed Hamiltonian H, aiming to make the model closely approximate the
true physical Hamiltonian in real space. Specifically, the loss function for the first training stage is defined as:

Lstage1 = ∥H ′ −H∥ (11)

where ∥·∥ represents the mean absolute error of each matrix element. In this stage, we trained the model

until convergence to ensure that H̃ ′ closely matches H in real space. This stage can be viewed as an initial
calibration of the model, laying the foundation for subsequent fine-tuning.

Once the first training stage was completed, we loaded the parameters of the converged model and
proceeded to the second training stage. In this stage, the reciprocal-space band structure constraints are
introduced to refine eigenvalue accuracy. Specifically, the model-predicted Hamiltonian H̃ was diagonalized
to obtain the predicted band structure in k-space, Ẽ′

nk, which was then compared with the DFT-computed
band structure Enk. The loss function for this step is defined as:

Lstage2 = ∥H ′ −H∥+ λ

Nb ×Nk

Nk∑
k=1

Nb∑
n=1

|E′
nk − Enk| (12)

where λ is the weight of the band structure error in the total loss, Nk is the number of k-points randomly
sampled in reciprocal space, and Nb is the number of selected bands, typically focusing on those near the

Fermi level. Given that the SOC terms (ξ
̂⃗
L · ̂⃗σ) act as a perturbation to the non-SOC component H0 and

exhibit negligible prediction errors after the first training stage, our second stage training focuses exclusively
on the eigenvalues of H0 without modifying SOC parameters.

Both training stages employ the AdamW[39, 40] optimizer with stage-dependent hyperparameters. Stage
1 utilizes an initial learning rate of 10−2 to efficiently navigate the parameter space, while Stage 2 adopts
a reduced rate of 10−4 combined with λ = 10−2 for precise eigenvalue tuning. To prevent overfitting, we
implement an adaptive early stopping protocol: If validation accuracy plateaus for 5 consecutive epochs
(Npatience = 5), the learning rate halves. Training terminates if no improvement persists for 30 epochs (Nstop =
30) or when the learning rate falls below 10−5, ensuring efficient resource utilization while maintaining model
generalizability.

4.5 The calculation of Z2 invariant

For calculating the Z2 topological number on each two-dimensional plane, the overlap matrix U proposed by
Fukui-Hatsugai-Suzuki can be employed, defined as[30]:

U∆k = det ⟨un(k)|um(k+∆k)⟩ (13)

Using the overlap matrix, Berry connection and Berry curvature can be computed on each plaquette:

Aab = Im lnUab (14)

Ω(k) = Im ln (U12U23U34U41) (15)

The integer resonance n (= 0,±1) on each plaquette can be calculated by:
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n(k) =
1

2π
(A12 +A23 +A34 +A41 − Ω(k)) (16)

By summing n across half of the Brillouin zone and taking the result modulo 2, the Z2 invariant is obtained:

Z2 =
1

2π

Half BZ∑
k

n(k) (mod 2) (17)

4.6 DFT calculation details

DFT calculations were performed on Materials Project structures to generate real-space Hamiltonian matrices
using OpenMX[41]—a computational package designed for nanoscale material simulations utilizing norm-
conserving pseudopotentials and pseudo-atomic localized basis orbitals. The training set Hamiltonians were
computed with the following parameters: a 6×6×6 Monkhorst-Pack k-point grid for Brillouin zone sampling,
a SCF convergence threshold of 1.0×10−8 Hartree, and an energy cutoff of 200 Ry for real-space discretization.

5 Code and data availability

The HamGNN-V2 code is publicly accessible on GitHub at https://github.com/QuantumLab-ZY/HamGNN.
The network weights of Uni-HamGNN will be made publicly available once the paper is officially accepted.
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