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Abstract 

Machine learned interatomic potentials (MLIPs) are reshaping computational chemistry practices 

because of their ability to drastically exceed the accuracy-length/time scale tradeoff. Despite this attraction, 

the benefits of such efficiency are only impactful when an MLIP uniquely enables insight into a target 

system or is broadly transferable outside of the training dataset, where models achieving the latter are 

seldom reported. In this work, we present the 2nd generation of our atoms-in-molecules neural network 

potential (AIMNet2), which is applicable to species composed of up to 14 chemical elements in both neutral 

and charged states, making it a valuable method for modeling the majority of non-metallic compounds. 

Using an exhaustive dataset of 2 x 107 hybrid DFT level of theory quantum chemical calculations, AIMNet2 

combines ML-parameterized short-range and physics-based long-range terms to attain generalizability that 

reaches from simple organics to diverse molecules with “exotic” element-organic bonding. We show that 

AIMNet2 outperforms semi-empirical GFN-xTB and is on par with reference density functional theory for 

interaction energy contributions, conformer search tasks, torsion rotation profiles, and molecular-to-

macromolecular geometry optimization. Overall, the demonstrated chemical coverage and computational 

efficiency of AIMNet2 is a significant step toward providing access to MLIPs that avoid the crucial 

limitation of curating additional quantum chemical data and retraining with each new application. 
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Introduction 

The accessibility of quantum mechanical (QM) calculations and the continuous improvement of 

data-driven techniques, such as machine learning, have unlocked chemistry research directions that would 

be otherwise too expensive or impractical to pursue.1–3 Machine learned interatomic potentials (MLIPs)4–

6—which are models that aim to reproduce QM potential energy surfaces given sufficient training data—

have a notable presence in this emerging style of chemical research. One of the main attractions of these 

models is that quantum chemical calculation workloads that require hours or days can be approximated 

within seconds. Using MLIPs, it is now possible to examine large batches of molecular systems or materials 

consisting of >105 atoms with minimal sacrifices compared to QM accuracy using relatively modest 

computational resources, assuming pretrained models are made available. Computational chemistry 

research has accelerated to a point where evaluating millions of systems is trending toward becoming a 

routine step in the design-of-experiments, albeit with access to the proper accelerated computing hardware. 

As a result, MLIPs exist as promising tools for addressing diverse challenges faced across the chemical 

sciences.7–9 This is particularly relevant if they are robust enough to be coupled with high-throughput 

experimentation, autonomous synthesis platforms, and robotic chemistry laboratories.10–13 

Avoiding the cost of QM calculations is a primary MLIP benefit; however, most reported models 

are specific to one system or a small number of compounds. This slows the ability of MLIP-driven 

simulations to address chemical challenges, particularly when QM data is not available and needs to be 

generated. The time required to curate a dataset, train an MLIP, and properly validate its chemical space 

coverage can significantly offset the low computational cost of applying the model. An alternative is to 

collect a large amount of training data with broad chemical space coverage and train a general MLIP, ideally 

with a workflow that minimizes unnecessary QM calculations and maximizes the contribution each system 

has for refining a model.14–16 

With this motivation, there is a need to develop MLIPs that are transferable to a wide range of 

compounds with diverse chemical compositions and charge spin states. The accurate neural network engine 

for molecular energies (ANI)17,18 family of MLIPs were some of the earliest models to achieve reliable 

predictions for millions of molecular systems composed of H, C, N, O, F, Cl, and S.19 The ANI MLIPs are 

effective for cases where physical and chemical characteristics can reasonably be approximated using only 

short-range truncated chemical environments; however, different model architectures are required for 

systems with many elements, non-local behavior, open-shells, and charged species. Recent model 

developments have overcome the poor scaling with respect to the number of parametrized chemical 

elements, provided mechanisms to incorporate contributions from long-range interactions20–23, and 

introduced methods for considering spin states.24–26 Despite this progress, we are unaware of any MLIP that 

incorporates long-range interactions, can be used with a large number of elements, has coverage of neutral 

and ionic compounds, and is robust enough to be applied to exotic chemistry such as hypervalent species. 

Herein, we report an advancement to the atom-in-molecules neural network potential model suite, 

AIMNet2, which expands our previous model to include 14 chemical elements and long-range electrostatic 

and dispersion interactions for compounds with varied charges and valency. In addition to making these 

pretrained models available, we also provide access to the AIMNet2 architecture, allowing the 

computational chemistry community interested in developing MLIPs to train their own models and fully 

utilize the efficiency and scalability for targeted applications. 
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Results and Discussions 

Model design 

A schematic overview of the key components of the AIMNet2 architecture is shown in Figure 1. 

AIMNet2 calculates the total energy of a chemical system according to 

 

𝑈𝑇𝑜𝑡𝑎𝑙 = 𝑈𝑙𝑜𝑐𝑎𝑙 + 𝑈𝐷𝑖𝑠𝑝+ 𝑈𝐶𝑜𝑢𝑙    (1) 

 

where 𝑈𝑙𝑜𝑐𝑎𝑙, 𝑈𝐷𝑖𝑠𝑝, and 𝑈𝐶𝑜𝑢𝑙 refer to the local configurational interaction energy, explicit dispersion 

correction, and electrostatics between atom-centered partial point charges, respectively. Similar to the 

previous version of AIMNet,27 multi-task predictions can be constructed on-top of the learned 

representation, i.e., the so-called AIM vector, but we chose to omit them for clarity. However, this feature 

supports the flexibility of AIMNet2 to be applied to diverse molecular and material systems because the 

functional form can be readily tailored to meet the demands of the modeling task by including additional 

output heads. We include explicit dispersion interactions using a PyTorch28 implementation of the DFT-D3 

correction model from Grimme and coworkers29,30. All source code and pretrained models used in this work 

are provided in the Data and Code availability Sections. 

 

 

 

Figure 1. Operations and unrolled message passing workflow of the AIMNet2 architecture. Atomic 

coordinates (R), atomic numbers (Z), and net charge of the system (Q) are model inputs. AIMNet2 uses a 

message passing approach, where atomic feature vectors (v(*)) are calculated via a convolution and 

concatenation of atomic and geometric descriptors. The local configurational energy is obtained using the 

atoms-in-molecule vector (AIM), which is summed with dispersion and electrostatic contributions in the 

calculation of the total energy.    

 

In AIMNet2, the AIM layer is a learned atomic representation that is determined using a message-

passing architecture. First, the interatomic distances are expanded into a set of radial symmetry basis 

functions of the form: 

 

𝑔𝑖𝑗𝑠 = 𝑒
(𝜂(𝑟𝑖𝑗− 𝑟𝑠)

2
)
𝑓𝑐(𝑟𝑖𝑗)                    (2) 

https://doi.org/10.26434/chemrxiv-2023-296ch-v3 ORCID: https://orcid.org/0000-0001-7581-8497 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-296ch-v3
https://orcid.org/0000-0001-7581-8497
https://creativecommons.org/licenses/by-nc/4.0/


4 

 

 

where the local atomic environment of atom 𝑖  is described as a collection of Gaussian functions with a set 

of center positions 𝑟𝑠 and widths 𝜂. The subscript dimension 𝑠 defines the number of Gaussian functions 

composing the basis (16). The symmetry functions are damped with a cosine cutoff function (𝑓𝑐) that 

smoothly reduces these descriptors to 0 at the local distance cutoff of 5.0 Å. It should be noted that this 

cutoff is used only in evaluating 𝑈𝑙𝑜𝑐𝑎𝑙 and long-range interactions, such as 𝑈𝐶𝑜𝑢𝑙 and 𝑈𝐷𝑖𝑠𝑝, are calculated 

for the entire system, or with a suitable cutoff, e.g. 15 Å. The strategy of augmenting short-range 

interactions with long-range contributions is one of several approaches to overcome the nearsightedness of 

MLIPs, where methodological trade-offs have recently been discussed in detail.23 Regardless, the atomic 

environment vectors are combined with atomic embeddings (Eq. 3-5) to provide a feature vector 

representation that is rich in chemical details. 

 

𝑎𝑑𝑠(𝑧) ∈  𝑅𝑑𝑠        (3) 

 

𝑣𝑖𝑠𝑑
(𝑟,𝑎)

= ∑ 𝑔𝑖𝑗𝑠𝑎𝑗𝑑𝑠𝑗        (4) 

 

𝑣𝑖ℎ𝑑
(𝑣,𝑎)

= ‖∑ 𝑔𝑖𝑗𝑠�⃗� 𝑖𝑗 𝑎𝑗𝑑𝑠𝑤𝑑𝑠ℎ𝑗𝑠 ‖    (5) 

 

Atomic embeddings (𝑎) are defined using a 16x16-matrix (𝑑, 𝑠) that initially depends on each 

atom’s atomic number (𝑧), where 𝑑 is a hyperparameter controlling the embedding size. The design of this 

2D-embedding was motivated by a desire to enhance AIMNet2’s flexibility by introducing a message-

passing convolution that depends on which radials shells dominate the composition of 𝑔𝑖𝑗𝑠. With each 

message pass, the atomic embedding is updated to provide a refined description of the chemical 

environment of neighboring atoms, thus, obfuscating the need for multiple element-specific networks, 

which are required, for instance, in MLIP models such as ANI.17,18 This flexibility provides the AIMNet2 

architecture an ability to efficiently generalize to arbitrary number of chemical elements with a without 

species-specific networks. During the first message passing iteration, the atomic feature vectors are 

constructed via a concatenation of so-called ‘scalar’ (𝑣𝑖𝑠𝑑
(𝑟,𝑎)

) and ‘vector’ (𝑣𝑖ℎ𝑑
(𝑣,𝑎)

) embedding components, 

which collect information of atomic environment using harmonics with angular momentum l=0 and l=1. 

The 𝑣𝑖ℎ𝑑
(𝑣,𝑎)

 calculation is similar to that of 𝑣𝑖𝑠𝑑
(𝑟,𝑎)

; however, a combination of the embedding features is 

carried out using linear transformation with the weight matrix, 𝑤𝑑𝑠ℎ , before performing a vector-norm of 

the resultant matrix multiplication sum. A set of initial atom-centered partial point charges (𝑞) are predicted 

during the first message pass. In subsequent iterations, the input description of each atom is expanded to 

include charge components. Partial charges undergo a similar convolution to that described in Eqs. 4 and 

5; however, 𝑎𝑑𝑠 is replaced with each atom’s partial point charge. Thus, the atomic feature vectors after the 

first message pass are modified to be a concatenation of 𝑣𝑖𝑠𝑑
(𝑟,𝑎)

, 𝑣𝑖𝑠
(𝑟,𝑞)

, 𝑣𝑖ℎ𝑑
(𝑣,𝑎)

, and 𝑣𝑖ℎ𝑑
(𝑣,𝑞)

. 

It is worth highlighting that other models have been reported that include electronic structure 

information, e.g., partial charges, as a component in their input representation. As an example, one could 

use partial charges from charge equilibration procedures (QEq)31, as is done in the 4GNNP model of Ko et 
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al.,21 which requires defining environment-dependent electronegativities and solving a system of linear 

equations either iteratively or through matrix inversion. In contrast, AIMNet2 infers partial charges from 

the feature vector representation and iteratively refines them as part of the message passing procedure. 

Every partial charge update is followed by an application of Neural Charge Equilibration (NQE), which is 

a methodology adapted from the work of Zubatyuk et al. for simulating open-shell or ionic species with 

AIMNet-NSE.25 The final message passing iteration yields the AIM representation, which serves as the 

input for a multilayer perceptron that ultimately infers 𝑈𝑙𝑜𝑐𝑎𝑙. 

 

Data distillation  

A major challenge to training an MLIP that covers wide ranges of chemical space is that the 

reference dataset used during training can quickly grow to an impractical scale. As a result, it is necessary 

to carry out data curation and model training practices that limit dataset redundancy and maximize the value 

that each data point will contribute to refining the MLIP model. The overall aim is to achieve a manageable 

collection of informative quantum chemical data for training an AIMNet2 model that displays similar 

accuracy to a model that is laboriously trained on the full set of labeled data. In this report, we compact our 

dataset by implementing a strategy that we refer to as data distillation. 

The process of data distillation involves iteratively growing a training set that is a subset of the 

master set of all the accumulated quantum chemical calculation results, i.e., ~120 million samples 

(molecular systems) labeled with low-fidelity B97-3c32 DFT method. Specifically, we began by randomly 

selecting 1 x 105 reference data and trained an initial AIMNet2 potential. Following training, we performed 

inference on the master set, with molecules sorted smallest to largest, until we found an additional 1 x 105 

reference data that are predicted above a threshold of 3x the current training error. Candidate structures 

from the master set were evaluated using both force and energy criteria, where samples falling above either 

error threshold, defined using the most recent training run, were selected. These structures are added to the 

training set, and training continues starting from the previous model weights. This process repeats until the 

final AIMNet2 model can accurately describe the entire master set, which occurred for our pretrained 

AIMNet2 models when we reached ~2 x 107 reference data points. We then retrained the final ensemble 

AIMNet2 models (4 members) from scratch. 
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Figure 2. Overview of AIMNet2 model development and application usage. Diverse sampling techniques 

were used to curate a dataset of 120 million chemical systems that were labeled with B97-3c DFT. 

Following data distillation, the remaining 20 million systems were labeled with ωB97M-D3/Def2-TZVPP 

and used to train the application ready AIMNet2 models.  

 

An overview of the preparation and use of our pretrained AIMNet2 models is presented in Figure 

2. We used ChEMBL33 and PubChem34 as key sources of the molecular structures. We performed non-

equilibrium conformational sampling with molecular dynamics and metadynamics using GFN2-xTB35 and 

torsional scans with preliminary models. Additional structures were added from ANI-2x18 and OrbNet36 

datasets. Altogether, this formed the master set of ~1.2 x 108 molecular conformers for data distillation. 

The entire pool of structures was initially labeled with computationally efficient B97-3c32 calculations. 

After reducing the master dataset to ~2 x 107 samples, all structures were computed with more expensive 

and accurate ωB97M-D3/def2-TZVPP.37 Additional details and statistics regarding the dataset can be found 

in the Methods section and SI. 

 

Case study of uncommon bonding 

In this Section, we report two test cases using our pretrained AIMNet2 models to demonstrate 

transferability. In the first case we consider the ability of the AIMNet2 models to reproduce experimentally 

observed geometries of molecules with unusual bonding. For the second test case, we assess performance 

in conformer search tasks for species composed of an extended set of chemical elements with verified 

experimental crystal structures. The aim of the first benchmark is to highlight that the potential energy 

surface learned by the pretrained models can be used to accurately identify molecular geometry minima for 

organic and element-organic structures, particularly those with diverse covalent bonding. To emphasize 

this robustness, we selected 113 molecular structures that have rare bonding patterns of a larger extracted 

set from the Cambridge Structural Database (CSD)38. For details on the criteria and procedure used to down 

select these structures from an initial set of ~2.5 x 105 diverse compounds from CSD, see the Methods 

Section and SI Note 1. While AIMNet2 were trained on samples broadly containing the covalent bonding 

possible in our element set, these testing molecules possess notably out-of-distribution chemical structures.  

For each structure, geometries were optimized with the pretrained AIMNet2 models in the gas phase and 

compared to a ground truth conformer extracted from experimentally resolved crystal structures. For these 

113 selected molecules (see the SI for geometries and reference codes) our models displayed an average 

root-mean-squared-deviation (RMSD) of 0.38 Å. Six examples from the 113 total cases evaluated are 

presented in Fig 3. Considering some discrepancy is expected when comparing gas phase and crystal 

structure geometries, the low RMSD value shows our model is robust even for fringe cases like a six-

coordinated Cl ion or a selenium-doped boron cluster. In addition to assessing the AIMNet2 models trained 

on the results of ωB97M-D3 calculations, we compared with GFN2-xTB and AIMNet2 trained to B97-3c 

reference data. Geometry optimization was carried out with reasonably tight convergence criteria (fmax  < 5 

x 10-3 eV Å-1) starting from experimental geometry, which was followed by computing the RMSD of heavy 

atom positions between the experimental and optimized geometries (see SI Table 2 and SI Figure 1). Both 

AIMNet2 models were observed to yield lower RMSDs (0.32 and 0.35 Å) compared to the semi-empirical 

GFN2-xTB (0.37 A). We also examined the lengths of bonds containing non-hydrogen atoms and at least 
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one species from our so-called “extended element” set (B, Si, P, As, Se, Br, I) to provide further insight 

into the ability of AIMNet2 to accurately describe diverse chemical geometries. The mean absolute 

deviation in these bond lengths from our 113 molecules is 2.4% and 2.1% for AIMNet2-B97-3c and 

AIMNet2-ωB97M-D3, respectively, indicating that, despite their uncommon nature, AIMNet2 captures 

extended element covalent bonding within an accuracy of a few picometers. It should be noted that two 

structures, [As3Br12]3- and [As3I12]3- (Refcodes VUFRIX and GEHVIY), decomposed into two fragments 

during optimization with GFN2-xTB, and the latter also with AIMNet2-wB97M-D3. These entries were 

excluded from the RMSD statistics. Moreover, four structures failed to converge during the self-consistent 

charge procedure of GFN2-xTB. Regardless, these results show that AIMNet2 can reliably reproduce 

molecular geometries even in unusual, arguably exotic, bonding situations. 

 

Figure 3. Alignment of molecular geometries optimized with AIMNet2 in the gas phase compared to 

conformers extracted from the experimental crystal structure. 2D molecular sketches are depicted along 

their corresponding 3D geometries. Experimental conformers are colored with the SMARTS color scheme, 

and AIMNet2 optimized structures are colored in light blue regardless of atom type. 

 

In the second step of our benchmark study, we measured the performance of pretrained AIMNet2 

models in a conformational search task (See SI Note 2). We define success in this task as the ability to 

identify conformers that agree with those resolved experimentally by starting from a consistent pool of 

structures generated from molecular graphs without bias toward the ground truths, i.e., the geometries 

extracted from the CSD. For an interatomic potential to be used in conformer search, it must describe 

interactions between particles in near and off-equilibrium molecular geometries accurately, thus, success 

in this benchmark supports the broad chemical space coverage of AIMNet2. Beginning with the same subset 

of ~2.5 x 105 extracted molecules, we selected a chemically varied set of 676 molecules that have 10-40 

non-H atoms and 1-3 rotatable bonds. From each molecule’s SMILES representation, an initial pool of 

molecular structures was produced using torsion driving with OpenEye Omega’s Dense conformer 

ensemble generator. On average, 86 distinct conformers were generated for each molecule. After optimizing 

all conformers within the ensemble, we selected only those within 6 kcal mol-1 from the lowest energy 

conformer, which is a typical energy cutoff used in a conformation search task. Then within the pool of 
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low-energy conformers, we searched for the conformation that is the closest to the experimental structure 

and recorded its RMSD and relative energy within the ensemble.  

 

 

Figure 4. Success rate (red squares) of matching experimental geometries in a conformer search task of 

extended element structures. Success can be judged by the criteria of being low-energy (<2.0 kcal mol-1) 

and having low root-mean-squared-deviation (RMSD < 0.5 Å). Each data point represents the single 

closest match to the experimental structure extracted from CSD for each of the 676 targets. 

 

In Figure 4, we compare the success rate in locating approximate experimental geometries within 

the set of low-energy conformers in the optimized pool of structures for low-cost DFT, semi-empirical 

GFN2-xTB, and AIMNet2. We define a broad metric of success using two criteria: (1) the number of 

structures that have a low (<0.5 Å) RMSD to the ground truth and (2) the lowest RMSD structure also 

displaying low-relatively energy (<2.0 kcal mol-1) in the optimized pool. In other words, these criteria 

(displayed as red boxes in Fig. 4) reflect the likelihood of finding a high-quality molecular geometry if one 

were to conduct conformer search without knowing the ground truth. It is worth acknowledging that the 

bounds of this success window are somewhat arbitrary, and they can be tailored for the application or 

molecule(s) of interest. To limit ambiguity in our definition of success, the distribution of closest matches 

for each method are provided along the external bounds of Figure 4. The pretrained AIMNet2 models 

display the lowest average RMSD and most compact distribution for identifying the experimental geometry 

among the three methods. Interestingly, GFN2-xTB optimizations result in better, on average, energy 

predictions than AIMNet2; however, this should be balanced against the significantly larger breadth of the 

distribution in the geometric comparison. In other words, many of these low energy predictions experience 

large geometric deviations that can hinder their practical use. Conformer search using DFT (B97-3c) 

optimizations can be regarded as a reliable, albeit more computationally demanding, measure of the typical 

success rate for this benchmark. Since performing optimization with the hybrid DFT method is 

computationally demanding, the DFT results are reported using B97-3c32 which serves a reasonable 

reference point. Overall, this method32 identifies conformer geometries that are close to experimentally 

observed structures in 83% of the cases (see SI). It should be noted that this reflects not only the accuracy 

of the method but also the quality of conformational ensembles produced by OpenEye Omega, which is out 

of scope of our benchmark. It is worth emphasizing that the small percentage of geometries that are outside 

the RMSD window should not necessarily be labeled as a failure of the DFT or AIMNet2 potential energy 
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surface representations, but instead they reflect a population of higher deviation minima. Considering both 

energy and geometry criteria, B97-3c conformer search was found to achieve success in 75% of the 676 

cases (See Figure 4b). The success rate for neutral molecules is observed to be ~15% higher compared to 

charged ones. GFNFF39 (see SI) and GFN2-xTB methods displayed noticeably lower success rates, 

especially for conformer geometry (See SI Table 3), with values of 42.1% and 45.2%, respectively. In 

contrast, AIMNet2 models trained on ωB97M DFT data achieved a 77% success rate and is within 2% of 

direct B97-3c calculations for both criteria.  

 

General Interaction Energy Benchmarks 

To evaluate the performance of our pretrained AIMNet2 models, we examined two of the most 

extensive and chemically diverse validation data sets commonly used for discerning accuracy in quantum 

chemical calculations, namely GMTKN5540 (General Main-group Thermochemistry, Kinetics, and 

Noncovalent interactions) and NCI Atlas (Non-Covalent Interactions Atlas)41–44. Both benchmarks are 

designed to provide assessments that target the accuracy of electronic structure calculation methods to 

describe various chemical behavior. The GMTKN5540 validation set of Goerigk, Grimme, and co-workers 

is divided into 55 sub-datasets, where each set focuses on specific phenomena underpinning molecular 

properties. There are seven datasets that address reaction barrier heights, 18 datasets dedicated to basis 

properties and smaller molecular systems—where nine of these primarily investigate noncovalent 

intramolecular interactions—, 12 datasets consist of diverse intermolecular interactions, and the remaining 

nine are concentrated on reaction energies and isomerization energies for larger systems. The NCI Atlas is 

a curated collection of interaction energies and dissociation curves for complexes where intermolecular 

interactions are dominated by contributions such as London dispersion, sigma-hole interactions, and 

hydrogen bonding in charged and neutral molecules (including extended species: B, S, Se, P, halogens). 

Compared to earlier datasets like S6645, the NCI Atlas data sets are larger and more accurate, and they also 

offer additional advantages such as a systematic construction, increased diversity of the model systems, and 

high-quality molecular geometries, to name a few.44 

Typically, when evaluating the performance of QM methods using the GMTKN55 benchmark, 

results are reported using aggregated scores known as WTMAD-1 or WTMAD-2. These scores are derived 

by weighing the mean absolute deviation of the calculated results against the reference values. The 

distinction between WTMAD-1 and WTMAD-2 lies in the relative weighting assigned to the different 

subsets within GMTKN55. 
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Figure 5.  Performance of AIMNet2 models, GFN2-xTB and DFT methods on the (a) GMNTK55 

benchmark and (b) the Non-Covalent Interaction (NCI) Atlas benchmark. For the NCI atlas benchmark, 

performance as a function of separation distance is reported for AIMNet2 models trained to ωB97M-D3 (c) 

and B97-3c (d). HB300SPX×10 - Hydrogen bonding extended to S, P and halogens; HB375×10 - Hydrogen 

bonding in organic molecules; IHB100×10 - Ionic hydrogen bonds in organic molecules; R739×5 - 

Repulsive contacts in an extended chemical space; SH250×10 - Sigma-hole interactions; D442×10 - 

London dispersion in an extended chemical space 

 

Consistent with the OrbNet Denali report46 and to enable a fair comparison between models with 

varying coverage of elements, charge and spin states, we calculated WTMAD scores over the GMTKN55 

subsets that are supported for each model and set the weight to 0 for the mean absolute deviation (MAD) 

for unsupported subsets. Figure 5a lists WTMAD2 scores of AIMNet2 models trained to two DFT 

references B97-3c and wB97M-D3/def2-TZVPP levels. Both models achieve substantial accuracy 

improvements compared to low-cost semi-empirical GFN2-xTB and are approximately equal to the 

proprietary OrbNet Denali model. For this dataset, AIMNet2 is on the order of 10 to 1000 times faster than 

GFN2-xTB and B97-3c, respectively. 

The only subset of the GMTKN55 dataset where the accuracy of AIMNet2 models does not 

outperform GFN2-xTB is for intermolecular interactions, which provides motivation to pursue additional 

detailed assessment to discern the origin of this performance difference. We further investigated the 

intermolecular interaction performance using NCI Atlas, where non-covalent interactions are partitioned 

into different types in a defined chemical space. For this benchmark, the AIMNet2 models significantly 

outperform for the subsets of ionic hydrogen bonds (IHB100x10) and sigma-hole interactions (SH250x10), 

whereas GFN2-xTB displays higher accuracy for the subset dispersion-bound molecular complexes 
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(D442x10) by ~0.3 kcal mol-1. The overall performance of AIMNet2 is, on average, 1-2 kcal mol-1 RMSE 

for the various subsets of NCI Atlas (See Fig 5b). This is nearly twice as large as the typical errors reported 

for DFT methods; however, it represents a 25-50% improvement in accuracy for ionic hydrogen bonds and 

sigma-hole interactions over GFN2-xTB. It is important to place the prediction accuracy of interaction 

energies in the context of separation distance. In Figure 5c-d, it is shown that the aggregate RMSE metrics 

are mainly dominated by differences occurring at separations less than the equilibrium or reference spacing, 

depending on the subset. The most significant difference is found for short-range sigma-hole interactions, 

which we regard as challenging physicochemical behavior to accurately predict for an atom-centered point 

charge model, especially one relying on local environment descriptors. 

It is worth commenting on the robustness of the pretrained AIMNet2 model errors with respect to 

predicting interaction energies of systems with varied total molecular charge (See SI Fig 4). By comparing 

different subsets of our training data, including neutral (Q=0), charged (|Q|<= 2), and strongly charged (|Q| 

from 3 to 9), we observe a consistently low ~1.5 kcal mol-1 RMSE. In other words, there is not a clear 

discernable bias of the model error as a function of the total molecular charge.  

 

Table 1. Performance comparison on the TorsionNet500 benchmark set. The reference energies are 

recalculated at their corresponding levels of theory. Metrics evaluated include the percentage of the torsion 

profiles for which the Pearson correlation coefficient (R) is greater than 0.9, the average Pearson R over 

the torsion profiles, the MAE and RMSE of the relative energies of the torsion profiles, and minima 

accuracy, which is defined as the percentage of torsion profiles where the global minimum of the profile is 

correct to within 20o and 1 kcal mol-1.  

 

Method 
Pearson R>0.9 

(% profiles) 

Average Profile 

Pearson R 

MAE 

(kcal mol-1) 

RMSE 

(kcal mol-1) 

Minima Accuracy 

(%) 

AIMNet2 96.6 0.99 0.32 0.47 98.2 

OrbNet Denali 99.4 0.99 0.12 0.18 100.0 

GFN2-xTB 76.4 0.88 0.73 1.00 94.0 

B97-3c 97.4 0.99 0.29 0.43 100.0 

ANI-2x 73.2 0.90 1.30 1.90 91.8 

 

To enable a comparison with models trained to a common set of chemical elements (CHNOSFCl) 

we also benchmarked the AIMNet2 model on the TorsionNet50047 dataset of torsion energy profiles for 

typical drug-like fragments. Following the outline of the original TorsionNet500 report, we compared 

several different metrics of accuracy (See Table 1). The AIMNet2 model shows a substantial improvement 

from the ANI-2x model, resulting in 3-5x error reduction and improvement in coverage while maintaining 

effectively the same computational performance. Torsion profiles calculated using OrbNet Denali and B97-

3c are also considered, where the AIMNet2 model displays performance that is consistent with B97-3c and 

~0.25 kcal mol-1 less accurate than OrbNet Denali. 

Efficient Optimization of Molecules to Macrostructures 

An attractive feature of broadly transferable MLIPs is their ability to enable fast and accurate 

optimization of an enormous number of molecular and material structures. To highlight this performance 
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for the AIMNet2 architecture, we conducted geometry optimization of varying system sizes, measured 

computational efficiency and scalability metrics, and compared them with regularly used low-cost methods: 

GFN-FF and the semi-empirical GFN2-xTB. The efficiency of the AIMNet2 architecture for optimizing 

small molecule conformer ensembles, i.e., batches same sized molecules with different initial geometries, 

is shown in Figures 6a. GFN-FF, GFN2-xTB, and AIMNet2 (CPU and GPU implementations) exhibit 

optimization efficiency, defined as the total time to reach convergence, that scales as O(N2), where N is the 

number of total atoms in the conformer structures. The performance of our GPU PyTorch implementation 

is particularly notable, where the AIMNet2 architecture yields ~5x faster optimization in comparison to 

GFN-FF for systems consisting of up to 80 atoms. This supports an ability to drastically accelerate high-

throughput optimization tasks and opens avenues to readily scale to millions with modest resources. 

Carrying out AIMNet2 geometry optimization on a CPU results in a slower time-to-converge by 

approximately 2 orders of magnitude, being slightly faster than GFN2-xTB. 

It is worth commenting that direct benchmarking between the semi-empirical methods and 

AIMNet2 is challenging due to the underlying details of the optimizer implementations. Our AIMNet2 

small molecule conformer ensemble benchmark uses an in-house batched PyTorch implementation of the 

FIRE optimizer, which we found to require ~1.5-2.0x more steps to converge than the approximate normal 

coordinate rational function optimizer (ANCopt) implemented within the xTB software suite. Despite 

requiring more gradient calls, we still observe improved performance for AIMNet on both CPU and GPU. 

Thus, the 5x speed-up can be viewed as a soft lower bound, and refinement of the optimization strategy can 

lead to even better performance. 

 

Figure 6.  Benchmarking molecular and macrostucture optimization performance of the AIMNet2 

architecture. a) Small molecule optimization performance, defined as the total average time to reach 

convergence, comparison for GFN2-xTB (red), GFN-FF (green), AIMNet2 using CPU (orange) and GPU 

(blue) resources. CPU optimizations were performed on a single core of an i7-9700K system, and GPU 

optimizations on an NVIDIA L40S. b) Macrostructure time (b) and peak memory (c) for force evaluations. 

Model systems are random polymer coils (red) and condensed phase methane (blue), where light colors 

(dashed lines) are for short-range models, dark colors (solid lines) are for models with long-range Coulomb 

+ D3 dispersion, and standard colors (dotted) are for models with long-range Coulomb. 

 

For large structure optimization, we examine two classes of systems in different density regimes 

consisting of up to 105 atoms: polymer random coils of polyethylene oxide (PEO) and condensed phase 
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methane (0.425 g cm-3), see Figure 6b and 6c. We emphasize that these molecular systems are selected as 

model cases to demonstrate the scalability of optimization efficiency afforded by the AIMNet2 architecture, 

and validating our pretrained models’ ability to simulate large polymer systems or condensed phase 

methane is outside the scope of this report. Efficiency is presented in terms of time per force evaluation to 

remove ambiguity that may arise from arbitrary differences between the initial geometry and converged 

structures. Moreover, only the performance of AIMNet2 is reported due to the computational limitations of 

performing semi-empirical optimization for systems of this size. O(N) scaling per optimization step is 

observed for both computational time and required memory for polymer systems for systems up to 105 

atoms. A single optimization step requires no more than three quarters of a second on a modern GPU, which 

is largely enabled by memory and thread efficient operations used in constructing the AIMNet2 

architecture. For the periodic methane models, the time required for force evaluations scale quadratically 

with the systems size, which is a consequence of the neighbor list construction as opposed to the AIMNet2 

inference (scales linearly). As much as 65% of the inference time is spent on neighbor list operations. For 

example, carrying out a force evaluation on 9 x 104 atoms methane simulation cell with a model using both 

short range (5 Å) and long-range (15 Å) components, requires 2.16 s to build the neighbor list but only 0.75 

s for AIMNet2 evaluation. To reduce this disparity, high-performing GPU kernels for efficient construction 

of AIMNet2 neighbor lists is an ongoing research effort. In Figure 6b and 6c optimization performance is 

also reported as a function of long-range interaction types. While the inclusion of Coulomb interactions 

requires little additional computational effort (both scaling and memory), our PyTorch D3 dispersion model 

is found to produce a significant memory footprint. This presents yet another opportunity for optimized 

kernel development, which conceivably benefits any MLIP developer seeking to include post hoc D3 

corrections. Regardless, the overall efficiency afforded by the AIMNet2 architecture combined with the 

robust accuracy of our provided pretrained models can be leveraged for high-throughput, chemically 

diverse, scalable geometry optimization. For systems outside the chemical space covered by the pretrained 

models, we have provided training scripts in the code repository to enable users to refine or develop their 

own models using the AIMNet2 architecture. 

 

Molecular Dynamics 

While the AIMNet2 model provides widespread chemical space coverage, efficient inference, and 

an accurate explicit treatment of nonbonded interactions, it is worthwhile to examine the potential’s utility 

for performing molecular dynamics simulations. A recent report by Fu et al.48 remarked that standard 

energy and force error metrics used by MLIP model builders are not necessarily reflective of an ability to 

perform stable molecular dynamics simulations. Explicitly demonstrating such a capability on a system that 

is not specifically targeted in the training set provides important validation of our pretrained AIMNet2 

models. With this motivation, we assessed the behavior of condensed phase carbon dioxide at 298 K with 

molecular dynamics simulations, see Figure 7a. Our decision to examine this model system is twofold: (1) 

simulating CO2 in a dense fluid state with periodic boundary conditions is a clear extrapolatory task as 

AIMNet2 was trained on small-to-moderately sized gas phase systems and (2) the work of Mathur et al49. 

provides precedent for the expected level of accuracy that CO2-specific MLIPs (in their case Deep Potential 

models50) can obtain. It should be noted that the AIMNet2 training dataset does not contain exhaustive 

sampling of CO2 molecule clusters. Therefore, performing stable and reasonably accurate molecular 
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dynamics simulation of the CO2 model system serves as an additional measure of AIMNet2’s 

generalizability. A complete description of simulation specific details is provided in the Methods Section. 

In addition to demonstrating stability, we calculated the average self-diffusion coefficient by tracking the 

mean-squared displacement (MSD) over the simulation trajectory and applying the Einstein approach51. 

 

Figure 7.  Demonstration of stable molecular dynamics simulations performed with AIMNet2. a) molecular 

dynamics snapshot of condensed phase CO2 at 298 K. b) and c) traces of the AIMNet2 calculated potential 

energy and the systems kinetic energy over the molecular dynamics simulation, respectively. The potential 

energy is shifted by the mean values calculated over the last half of the production run to allow for the 

magnitude of fluctuations to be easily observed. d) Average mean squared displacement (MSD) of the 1000 

CO2 over time used to calculate the self-diffusion coefficient. 

In Figure 7b and 7c, the potential and kinetic energy throughout the 2.5 ns simulation with data 

collected every 10 fs are shown. The traces of these energy functions are absent of any aberrations and 

display fluctuations with magnitudes typical of molecular dynamics simulations performed with classical 

empirical potentials, indicting no signs of instability. Moreover, we applied molecular geometry-based 

postprocessing criteria to confirm that all CO2 molecules stayed intact and maintain approximately linear 

geometry, i.e., we did not find any so-called “exploding molecules” that are typical of unstable simulations. 

In Figure 7d, we report the calculated MSD, averaging over all 1000 CO2 molecules, which exhibits the 

expected linear relationship in the long-time scale. This results in a self-diffusion coefficient of 2.82 x 10-9 

m2 s-1 where the approximate experimental value, interpolated from the work of Groß et al.52, is 7.09 x 10-

9 m2 s-1. Depending on the DFT functional used for generating reference data and the temperature evaluated, 

the DeePMD models of Mathur et al.49 displayed similar disagreement factors of up to 2.5x (also as 

underpredictions) with respect to the experimental measurements. The error in the AIMNet2 derived self-

diffusion coefficient originates from the underlying DFT functional, the model architecture, and the 

chemical information available in the training dataset. A significant DFT functional dependence for CO2 

fluid properties has been previously discussed by Goel et al.53, which is also observed by Mathur et al.49, 

and we are unaware any similar studies evaluating the ωB97M-D3/Def2-TZVPP method used to construct 

the AIMNet2 training set. Deconvoluting the degree to which each of these factors contributes to the 

prediction accuracy is a topic for future study. Regardless, our observations that the pretrained models can 

achieve relatively long timescales (for MLIPs) without noticeable aberrations and display accuracy 

comparable to previous work, despite any system-specific training, suggests that AIMNet2 can effectively 

drive stable molecular dynamics simulations. It is worth commenting that the development of ML potentials 

to accurately capture a wide range of non-local intermolecular interactions and related properties in a 
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condensed phase system is a non-trivial task23, and the robustness of AIMNet2 models trained on gas phase 

calculations translating to condensed phase simulations is under ongoing investigation. The GEMS model 

of Unke et al.54, which uses a divide-and-conquer strategy of training on DFT calculations of molecular 

fragments, supports the viability of gas phase-to-larger scale MLIP-driven simulations. Importantly, they 

describe the necessity to include sizeable molecular systems to accurately learn long-range interaction 

behavior in heterogenous systems, which is particularly relevant to large-scale molecular simulations such 

as those aimed at studying protein dynamics. In the interest of training efficiency, examples of large non-

covalent complexes compose only a small fraction of the AIMNet2 training set. Consequently, we have 

demonstrated molecular simulations for homogenous condensed phase CO2, but such performance is 

unlikely to extend to biomacromolecules for example. We emphasize this is a deficiency that is inherited 

from the aim of the training set, and the AIMNet2 architecture can drive such heterogenous simulations 

given a sufficient set of targeted training data. 

AIMNet2 in the Landscape of MLIPs 

Reflective of the evolving molecular modeling capabilities enabled by MLIPs, the introduction of 

new models with diverse use cases has grown in recent years. From a high-level perspective, these 

interatomic potentials can be classified according to model balance and model objective, which are the main 

influencers dictating algorithmic design and training dataset construction. In this Section, we aim to 

formally state the balance and objective targets of our pretrained models and provide an overview of the 

AIMNet2 architecture’s capabilities in comparison to other modern MLIPs. Model balance can be regarded 

as management of MLIP accuracy, efficiency, and transferability, which are defined by intertwined 

relationships that are akin to the performance trade-offs found in traditional molecular simulations, albeit 

on a different scale. We refer to model objective as the models intended use, which is crucial to interpret in 

the context of the trade-offs described by model balance. 

By our assessment, many modern MLIP models tend to favor improvements in accuracy over 

computational efficiency, e.g., NEQUIP56, Allegro57, TensorNet58, or MACE59. That is not to say efficiency 

is not a focus of these models. For example, Allegro is a creative solution to offer better computational 

efficiency than NEQUIP with only modest differences in accuracy. Instead, we emphasize that these 

architectures have an overall greater computational expense. A recent demonstration from Gao et al.60 

emphasizes this point, where DP-MP models, a message passing variant of the Deep Potential architecture, 

show ~2 orders of magnitude faster inference than those equivariant models listed above at the cost of ~10 

meV/Å force accuracy. AIMNet2 achieves similar computational performance, depending on the use of 

sparse or dense operations and neighbor list construction, while being slightly less accurate than MACE or 

NEQUIP when more computationally demanding yet informative higher body-order terms are included. 

The optimization of the SNAP potential by Wood and Thompson is another example.61 Although this was 

reported prior to the models mentioned above, their thorough discussion about the performance of MLIPs 

for pragmatic molecular simulations maintains its relevance.  

The objective of the pretrained AIMNet2 models is to provide reliable accuracy for general 

molecular modeling at an affordable computational cost, ultimately meeting the varied needs of high-

throughput computational chemistry. Other MLIP models have prioritized stable and/or scalable molecular 

simulations as a main objective, for instance, sGDML62, SNAP63, or DP64. sGDML is particularly 

interesting for performing molecular simulations because of its scalability and inherent smoothness. 

However, kernel methods typically suffer from poor transferability, and, as a result, it remains unclear if 
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the sGDML approach can be used for general chemistry without system-specific or domain-specific 

retraining, which is a key benefit of AIMNet2. It is worth reiterating that the comparisons presented in this 

Section can only be stated for neutral systems because AIMNet2 is, to the best of our knowledge, the only 

transferable potential available that also covers charged systems. Conceivably, the 4GNNP architecture of 

Ko et al.21 could be used to train a comparable general MLIP model; however, to achieve this for 14 

elements would be a demanding task considering the poor scaling of Behler-Parinello symmetry functions 

and Charge equilibration (Qeq) scheme. An extension of DP models capable of predicting Wannier centroid 

positions for charged compounds is also possible22; however, the algorithmic imposition of net charge 

would need to be developed and a dataset rivaling AIMNet2 is not available. AIMNet2 occupies a unique 

space in the MLIP landscape, being broadly applicable across compounds containing common non-

metals/halogens, regardless of charge state, while maintaining a high-level of computational efficiency, 

scalability, and practical accuracy. It is worthwhile to highlight one limitation of AIMNet2 for modeling 

charged systems, namely the range-dependent assignment of point charges via NQE. As an example, the 

dissociation of charged complexes is a limiting case. This is a consequence of charge redistribution via 

NQE occurring as a function of learned short-range descriptors. As non-neutral species move beyond the 

message passing cutoff, without intermediary molecules, the lack of communication between system 

components can yield systematic misprediction. This is an inherent limitation of any MLIP potential that 

relies on short-range learned descriptors, such as those used in message passing. Regardless, for molecules 

and molecular complexes, the pretrained AIMNet2 models are observed to produce distributions of atom-

centered point charges with accuracy near that of DFT. In Figure 8a, a comparison of predicted dipoles with 

respect to coupled cluster calculations for AIMNet2 (calculated from the distribution of point charges) and 

reference DFT (using the electron density) is presented for the QM7b dataset65. AIMNet2 models trained 

to ωB97M data are found to be ~0.04 D less accurate than the same underlying DFT and provide a similar 

quality of predictions as B97-3c. A direct comparison between the AIMNet2 and ωB97M dipole 

components is provided In Figure 8b, which shows strong correlation, R2 = 0.99, and modest RMSE, 0.09 

D.  

 

Figure 8.  Performance of pretrained AIMNet2 models for dipole inference. a) QM7b couple-cluster 

(CCSD) benchmark for dipole norm (blue) and dipole components (orange). b) Parity between the AIMNet2 

model trained to ωB97M data and the same level of reference DFT on QM7b structures. 

 

Conclusion 
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Simulation methods and molecular modeling tasks using MLIPs are becoming increasingly mature 

and will, likely, continue their growth as emergent core components in computational chemistry research. 

By our assessment, the field of MLIP development is beginning to split into several distinct focus areas, 

such as being exceptionally accurate for specific systems or being efficient and broadly generalizable with 

practical accuracy for many applications. Regarding the first area, advances are mainly being achieved by 

the development of increasingly complex and/or expressive model architectures, for example, the recent 

embrace of equivariant models.56,66,67 For the second area, which is the primary focus of our pretrained 

AIMNet2 models, we show that systematically curating an expansive dataset, allowing our model to learn 

its own flexible representations, and including physics-based functional forms into the MLIP architecture 

yields significant progress. Notable contributions to the performance of AIMNet2 are the imposition of net 

charge, an ML-assisted charge redistribution scheme (Neural Charge Equilibration or NQE25), and 

convolutions for partial charge updating, all of which incorporate rich electronic structure information to 

enhance the learning process. It is worth commenting that work by Ko et al.21 also experienced significant 

gains in performance by including electronic structure information, albeit using a different strategy of 

predicting partial charges with an ML-parameterized charge equilibration (QEq) technique that served as 

inputs alongside Behler-Parinello symmetry functions. In contrast to QEq, the NQE scheme scales linearly 

and introduces negligible computational overhead. 

In this work, we report an improved atoms-in-molecules neural network potential, AIMNet2, which 

yielded a set of pretrained models that are, to the best of our knowledge, the most generalized MLIPs to 

date for diverse organic and elemental-organic compounds. The AIMNet2 architecture overcomes many of 

the limitations intrinsic to the original model. In particular, AIMNet2 explicitly includes long-range 

interactions so that it is not bound by the locality of message passing, it is applicable to neutral and charged 

states, and covers compounds composed of twice as many (14) different chemical elements. Although it 

was not highlighted in this report, the multi-task predictions of the 1st AIMNet model can easily be 

incorporated into AIMNet2 by, for example, including additional predictive neural networks that operate 

on the learned AIM layer. The result is a flexible MLIP model that can be readily tailored to predict 

additional chemical properties without having to retrain the entire model for each task. 

As a final note, the challenge of achieving full chemical space coverage should be addressed. 

Setting aside issues with the transferability of the underlying reference data, it remains uncertain what is 

required, or if it is even possible or necessary, to train a single universal neural network potential with 

sufficient accuracy and efficiency for any task. Considering the surprising, at least in our opinion, 

generalizability of AIMNet2, it is clear that including information derived from electronic structure and 

interfacing with known physics-based functional forms are crucial steps in the right direction. While there 

are some physical phenomena that still need to be addressed, e.g., reactions or open-shelled species, our 

validation checks, benchmarking, and efficiency tests support the idea that AIMNet2 is a suitable drop-in 

replacement for DFT in many computational chemistry practices without needing to be retrained. 

 

Methods 

Dataset preparation 

To create the overall pool of training data we selected neutral and charged molecules under 20 heavy atoms 

from PubChem34 and ChEMBL33 databases that contained species in our defined set of elements {H, B, C, 
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N, O, F, Si, P, S, Cl, As, Se, Br, I}. All realistic tautomeric forms and protonation states across the pH range 

(1-14) were generated with Chemaxon JChem software.68 We utilized geometry optimization, torsional 

profile scans, and molecular dynamics (MD) as primary methods to explore molecular PESs around their 

minima. Thermal fluctuations of atoms in MD simulations allow for the near-equilibrium sampling of 

molecular conformational space. MD simulations of small molecular clusters were used for expanded 

sampling of non-covalent interactions. The set of structures was supplemented with systems taken from 

ANI-1x17, ANI-2x18 and OrbNet36 datasets to provide broader chemical space coverage in the AIMNet2 

training set. Additional details, such as dataset statistics, are provided in the SI. Similar to our previous 

work25, we used quantum mechanically derived force field (QMDFF)69 as an efficient method to construct 

system-specific and charge-specific potential for a molecule. We also applied the GFN2-xTB35 tight-

binding model to obtain relaxed conformations, force constants, charges, and bond orders that are needed 

for the QMDFF model. 

Molecular clusters were created by constructing a rectangular periodic cell within the range of 20 

to 30 Å. N=2-5 molecules from dataset are then selected randomly, with a probability that is skewed toward 

choosing molecules with less non-hydrogen atoms. The selected molecules are then embedded within the 

periodic cell with random positions and orientations under the condition that no two atoms in different 

molecules are within 1.5 Å. The atom density of the box is also randomly determined within reasonable 

bounds. Preliminary AIMNet2 models are used to run a MD simulation on the constructed box of 

molecules. MD is carried out at a random temperature between 50 K and 600 K using the Langevin 

thermostat. After 100 timesteps, the box is decomposed into a complete set of N-mer structures {xi}, where 

i indexes the molecules. Only N-mer structures with at least two atoms, one from each monomer, within a 

distance cutoff of 6.0 Å are selected. 

For torsion sampling component of the AIMNet2 dataset construction, SMILES strings are selected 

from a subset of molecules with rotable dihedrals. Consistent with the diversity selection algorithm (see 

below), we selected all possible conformers with unique torsion angles. RDKit is used to embed the 

molecules in 3D space and select rotable dihedrals70. The preliminary AIMNet2 models are used to optimize 

the starting geometry, and carryout a relaxed scan, incremented by 10 degrees over the entire torsion profile. 

All DFT calculations were performed with the ORCA 571 package using B97-3c32 and ωB97M-D3/def2-

TZVPP37 levels of theory. 

  

Model Training 

 AIMNet2 models were trained using minibatch gradient descent with the AdamW72 optimizer. To 

improve training performance, all minibatches were composed of molecules with the same number of atoms 

to avoid padding operations. Proper data feed shuffling was achieved within the multi-GPU distributed 

data-parallel (DDP) approach: gradients on model weights were averaged after 8 random batches were 

evaluated in parallel, thus the effective combined batch size was 2048. Training was performed on 8 Nvidia 

V100 GPUs. We employ a reduce-on-plateau learning rate schedule, which leads to training convergence 

within 400–500 epochs. The training objective was minimization of weighted multi-target mean squared 

error (MSE) loss function: 

 

ℒ = 𝑤𝐸ℒ𝐸 + 𝑤𝐹ℒ𝐹 + 𝑤𝐷ℒ𝐷 + 𝑤𝑄ℒ𝑄 
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The loss functions include the weighted contributions from total energy prediction error ℒ𝐸 (scaled by the 

square root of number of atoms within molecule), and errors of prediction of the components of atomic 

forces ℒ𝐹, total dipole ℒ𝐷 and total quadrupole ℒ𝑄. The sum of the weights was normalized to unity, where 

values of w were selected via an empirically guided hyperparameter search. The final AIMNet2 loss 

contribution weights were 1.0, 0.2, 0.05, and 0.02 for 𝑤𝐸, 𝑤𝐹, 𝑤𝐷, and 𝑤𝑄, respectively using units based 

on eV, Å, and electron charge. The partial charges inferred by AIMNet2 are learned such that they 

reproduce the molecular dipole and quadrupoles extracted from the DFT reference calculations. 

 

Data Distillation 

The main purpose of the AIMNet2 model is to predict the energy, atomic forces, and charge 

distribution of organic and element-organic molecules in equilibrium and non-equilibrium configurations. 

The amount of required data could be drastically reduced with active learning techniques, such as the 

selection of the most important samples (molecular configurations) to label (compute reference DFT 

properties) and include in the training dataset. For example, the original 2.0 x 107 ANI-1 dataset for neutral 

CHNO organic molecules was reduced to 4.5 x 106 active learning. Extension to just three extra chemical 

elements S, F and Cl required an additional 4 x 106 samples. Therefore, a comparable extension of that 

dataset to 7 extra elements (B, Si, P, Br, As, Se, I), and charged molecules could be expected to require an 

order of ~108 new DFT data points, which is approaching practical limits. Therefore, to reduce the dataset 

even further, we combined our standard active learning query-by-committee approach14,15,73 with data 

distillation.74,75 

The process of data distillation involves two main components: a teacher (T) dataset and student 

(S) training. The teacher dataset is composed of all available labeled data. One could train an MLIP to the 

full teacher set to achieve a potential that captures the underlying physical and chemical relationships 

defined in the data. However, labeling the full teacher dataset with higher level of theory DFT calculations 

is impractical, even with supercomputing resources, and therefore, data distillation can be applied to limit 

redundant chemical information such that a tractably sized training set can be obtained. If D represents a 

general dataset, fθ represents an MLIP model with parameters θ, and fθ(x) is the model’s prediction for data 

point x, then the expected loss for dataset D in relation to θ is 

 

ℒD(θ) = 𝔼(x,y)~PD[ℓ(fθ(x),y)] 

 

where x and y are the input data and label pair from D, ℓ(fθ(x),y) is the given loss value between the 

prediction and ground truth. Dataset distillation aims to reduce the size of large-scale training input and 

label pairs T = {(xi, yi)} by creating smaller student pairs S = {(xi, yi)}, so that models trained on both T and 

S can achieve similar performance, which can be formulated as: 

 

ℒ(θT )  ~  ℒ (θS ), 
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where θT and θS are the parameters of the models trained on S and T, respectively. In our case, we focus 

on so-called distilling in instead of distilling out. In the distilling process, the student dataset is built up 

iteratively as a subset of the teacher (master) dataset.  

 

Diversity selection  

Molecular species used in our benchmark Section were collected via diversity selection using the 

local environment of each non-hydrogen atom composing the CSD-extracted molecules. Specifically, for 

each atom, we utilized a hashing function operating on atomic number, number of connected hydrogen 

atoms, the total number of neighbors, and the same set of properties for all neighboring atoms. This hash 

uniquely encodes the local environment for each atom in a molecule, and comparing hash values was our 

strategy for discerning molecules with diverse chemical structures. For each of the 14 atomic species types 

covered by the pretrained AIMNet2 models, we selected 10 molecules that contain the least frequent atomic 

hashes. Some of these top-10 molecules were duplicated. As a result, the final number of benchmark 

structures was reduced to 113 molecules instead of 140 after enforcing uniqueness. These 113 molecules 

exemplify a selection of the most unusual chemical bonding present in CSD, and thus serve as challenging 

test cases for demonstrating MLIP applicability. The full list of molecules and reference codes are supplied 

in the SI. 

MD Simulations 

The molecular dynamics simulation for the condensed phase CO2 system was performed using the 

atomic simulation environment (ASE)76 with a custom calculator (see the AIMNet2 repository). The 

simulation was performed under constant number of particles, volume, and temperature (NVT) conditions 

via the application of a stochastic velocity rescaling thermostat developed by Bussi, Donadio, and 

Parrinello77. This thermostat has been verified to correctly sample the canonical ensemble, provides proper 

conserved quantities, and produces accurate self-diffusion coefficients in fluid phase water. The NVT 

simulations were carried out with a reference temperature of 298 K, 0.5 fs timestep, and a characteristic 

thermostat time constant of 100 fs. Initial velocities were assigned by sampling a Maxwell-Boltzmann 

distribution at 298 K, which were then adjusted to set the total translation and rotational momenta of the 

system to zero. We verified that these net momenta were conserved during postprocessing of the simulation 

results. Long-range dispersion and electrostatic interactions were applied using a neighbor list built over a 

15 Å cutoff at every timestep. We elected to account for electrostatic interactions using the damped shifted 

force method78, which our initial testing showed to be a suitable choice for the CO2 system to achieve 

computationally efficient (O(N)) scaling without incurring differences to the dynamics compared to 

common long-range solvers, for example, Ewald summation79. The initial system was prepared using the 

enhanced Monte Carlo (EMC) software developed by in 't Veld and Rutledge80, where 1000 CO2 molecules 

were packed into a simulation cell at a density of ~0.95 g cm-3 and relaxed using an empirical potential. 

Prior to molecular dynamics, an LBFGS minimization for 103 steps and a max displacement of 0.02 Å per 

step was performed using the AIMNet2 pretrained model to limit any unfavorable initial geometries that 

may result from differences between the empirical potential and our MLIP. To compare diffusion 

coefficients, the external pressure was calculated using the equations described by Thompson, Plimpton, 

and Mattson81, which was then matched to the corresponding state point (~135 MPa and 298 K) through 

simple interpolation of the experimental results. 
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