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This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant

neural network approach for learning interatomic potentials from ab-initio calculations for

molecular dynamics simulations. While most contemporary symmetry-aware models use

invariant convolutions and only act on scalars, NequIP employs E(3)-equivariant convolutions

for interactions of geometric tensors, resulting in a more information-rich and faithful

representation of atomic environments. The method achieves state-of-the-art accuracy on a

challenging and diverse set of molecules and materials while exhibiting remarkable data

efficiency. NequIP outperforms existing models with up to three orders of magnitude fewer

training data, challenging the widely held belief that deep neural networks require massive

training sets. The high data efficiency of the method allows for the construction of accurate

potentials using high-order quantum chemical level of theory as reference and enables high-

fidelity molecular dynamics simulations over long time scales.

https://doi.org/10.1038/s41467-022-29939-5 OPEN

1 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. 2 École Polytechnique Fédérale de Lausanne,
1015 Lausanne, Switzerland. 3Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 4 Robert Bosch Research and Technology Center,
Cambridge, MA 02139, USA. 5 Computational Research Division and Center for Advanced Mathematics for Energy Research Applications, Lawrence
Berkeley National Laboratory, Berkeley, CA 94720, USA. 6 Department of Electrical Engineering and Computer Science and Research Laboratory of
Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ✉email: batzner@g.harvard.edu; bkoz@seas.harvard

NATURE COMMUNICATIONS |         (2022) 13:2453 | https://doi.org/10.1038/s41467-022-29939-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29939-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29939-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29939-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29939-5&domain=pdf
http://orcid.org/0000-0002-8826-2712
http://orcid.org/0000-0002-8826-2712
http://orcid.org/0000-0002-8826-2712
http://orcid.org/0000-0002-8826-2712
http://orcid.org/0000-0002-8826-2712
http://orcid.org/0000-0001-6705-8133
http://orcid.org/0000-0001-6705-8133
http://orcid.org/0000-0001-6705-8133
http://orcid.org/0000-0001-6705-8133
http://orcid.org/0000-0001-6705-8133
http://orcid.org/0000-0001-5581-5344
http://orcid.org/0000-0001-5581-5344
http://orcid.org/0000-0001-5581-5344
http://orcid.org/0000-0001-5581-5344
http://orcid.org/0000-0001-5581-5344
http://orcid.org/0000-0002-0638-539X
http://orcid.org/0000-0002-0638-539X
http://orcid.org/0000-0002-0638-539X
http://orcid.org/0000-0002-0638-539X
http://orcid.org/0000-0002-0638-539X
mailto:batzner@g.harvard.edu
mailto:bkoz@seas.harvard
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Molecular dynamics (MD) simulations are an indis-
pensable tool for computational discovery in fields as
diverse as energy storage, catalysis, and biological

processes1–3. While the atomic forces required to integrate
Newton’s equations of motion can in principle be obtained with
high fidelity from quantum-mechanical calculations such as
density functional theory (DFT), in practice the unfavorable
computational scaling of first-principles methods limits simula-
tions to short time scales and small numbers of atoms. This
prohibits the study of many interesting physical phenomena
beyond the time and length scales that are currently accessible,
even on the largest supercomputers. Owing to their simple
functional form, classical models for the atomic potential energy
can typically be evaluated orders of magnitude faster than first-
principles methods, thereby enabling the study of large numbers
of atoms over long time scales. However, due to their limited
mathematical form, classical interatomic potentials, or force
fields, are inherently limited in their predictive accuracy which
has historically led to a fundamental trade-off between obtaining
high computational efficiency while also predicting faithful
dynamics of the system under study. The construction of flexible
models of the interatomic potential energy based on machine
learning, and in particular neural networks, has shown great
promise in providing a way to move past this dilemma, promising
to learn high-fidelity potentials from ab-initio reference calcula-
tions while retaining favorable computational efficiency4–13.
Another central difference to classical force-fields based on ana-
lytical functions is that they often consist of explicit bonded and
non-bonded terms, whereas machine learning interatomic
potentials (ML-IPs) are agnostic to the bond topology of the
system and treat all interactions in an identical manner, based on
relative interatomic positions and the interacting chemical spe-
cies. One of the limiting factors of neural network interatomic
potentials (NN-IPs) is that they typically require large training
sets of ab-initio calculations, often including thousands or even
millions of reference structures4,9,10,14–16. This computationally
expensive process of training data collection has severely limited
the adoption of NN-IPs, as it quickly becomes a bottleneck in the
development of force-fields for complex systems.

In this work, we present the Neural Equivariant Interatomic
Potential (NequIP), a highly data-efficient deep learning
approach for learning interatomic potentials from reference first-
principles calculations. We show that the proposed method
obtains high accuracy compared to existing ML-IP methods
across a wide variety of systems, including small molecules, water
in different phases, an amorphous solid, a reaction at a solid/gas
interface, and a Lithium superionic conductor. Furthermore, we
find that NequIP exhibits exceptional data efficiency, enabling the
construction of accurate interatomic potentials from limited data
sets of fewer than 1000 or even as little as 100 reference ab-initio
calculations, where other methods require orders of magnitude
more. It is worth noting that on small molecular data sets,
NequIP outperforms not only other neural networks, but is also
competitive with kernel-based approaches, which typically obtain
better predictive accuracy than NN-IPs on small data sets
(although at significant additional cost scaling in training and
prediction). We further demonstrate high data efficiency and
accuracy with state-of-the-art results on a training set of mole-
cular data obtained at the quantum chemical coupled-cluster level
of theory. Finally, we validate the method through a series of
simulations and demonstrate that we can reproduce with high
fidelity structural and kinetic properties computed from NequIP
simulations in comparison to ab-initio molecular dynamics
simulations (AIMD). We directly verify that the performance
gains are connected with the unique E(3)-equivariant convolution
architecture of the new NequIP model.

The first applications of machine learning for the development
of interatomic potentials were built on descriptor-based approa-
ches combined with shallow neural networks or Gaussian
Processes4,5, designed to exhibit invariance with respect to
translation, permutation of atoms of the same chemical species,
and rotation. Recently, rotationally invariant graph neural net-
work interatomic potentials (GNN-IPs) have emerged as a pow-
erful architecture for deep learning of interatomic potentials that
eliminates the need for hand-crafted descriptors and allows to
instead learn representations on graphs of atoms from invariant
features of geometric data (e.g. radial distances or angles)9–11,13. In
GNN-IPs, atomic structures are represented by collections of
nodes and edges, where nodes in the graph correspond to indi-
vidual atoms and edges are typically defined by simply connecting
every atom to all other atoms that are closer than some cutoff
distance rc. Every node/atom i is associated with a feature hi 2 Rh,
consisting of scalar values, which is iteratively refined via a series
of convolutions over neighboring atoms j based on both the dis-
tance to neighboring atoms rij and their features hj. This iterative
process allows information to be propagated along the atomic
graph through a series of convolutional layers and can be viewed
as a message-passing scheme17. Operating only on interatomic
distances allows GNN-IPs to be rotation- and translation-invar-
iant, making both the output as well as features internal to the
network invariant to rotations. In contrast, the method outlined in
this work uses relative position vectors rather than simply dis-
tances (scalars) together with features comprised of not only
scalars, but also higher-order geometric tensors. This makes
internal features instead equivariant to rotation and allows for
angular information to be used by rotationally equivariant filters.
Similar to other methods, we can restrict convolutions to only a
local subset of all other atoms that lie closer to the central atom
than a chosen cutoff distance rc, see Fig. 1, left.

A series of related methods have recently been proposed:
DimeNet11 expands on using pairwise interactions in a single
convolution to include angular, three-body terms, but individual
features are still comprised of scalars (distances and three-body
angles are invariant to rotation), as opposed to vectors used in this
work. Cormorant18 uses an equivariant neural network for
property prediction on small molecules. This method is demon-
strated on potential energies of small molecules but not on atomic
forces or systems with periodic boundary conditions. Townshend
et al.19 use the framework of Tensor-Field Networks20 to directly
predict atomic force vectors. The predicted forces are not guar-
anteed by construction to conserve energy since they are not
obtained as gradients of the total potential energy. This may lead
to problems in simulations of molecular dynamics over long times.
None of these three works11,18,19 demonstrates capability to per-
form molecular dynamics simulations. After a first version of this
manuscript appeared online21, a series of other equivariant GNN-
IPs have been proposed, such as PaiNN22 and NewtonNet23. Both
of these methods were proposed after NequIP and only make use
of l= 1 tensors. In addition, we also compare a series of other
works that have since been proposed, including the GemNet24,
SpookyNet25, and UNiTE approaches26.

The contribution of the present work is the introduction of a
deep learning energy-conserving interatomic potential for both
molecules and materials built on E(3)-equivariant convolutions over
geometric tensors that yields state-of-the-art accuracy, outstanding
data-efficiency, and can with high fidelity reproduce structural and
kinetic properties from molecular dynamics simulations.

Results
Equivariance. The concept of equivariance arises naturally in
machine learning of atomistic systems (see e.g.27): physical

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29939-5

2 NATURE COMMUNICATIONS |         (2022) 13:2453 | https://doi.org/10.1038/s41467-022-29939-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


properties have well-defined transformation properties under
translation, reflection, and rotation of a set of atoms. As a simple
example, if a molecule is rotated in space, the vectors of its atomic
dipoles or forces also rotate accordingly, via an equivariant
transformation. Equivariant neural networks are able to more
generally represent tensor properties and tensor operations of
physical systems (e.g. vector addition, dot products, and cross
products). Equivariant neural networks are guaranteed to pre-
serve the known transformation properties of physical systems
under a change of coordinates because they are explicitly con-
structed from equivariant operations. Formally, a function f:
X→ Y is equivariant with respect to a group G that acts on X and
Y if:

DY ½g�f ðxÞ ¼ f ðDX ½g�xÞ 8g 2 G; 8x 2 X ð1Þ
where DX[g] and DY[g] are the representations of the group ele-
ment g in the vector spaces X and Y, respectively. Here, we focus
on the effects of invariance and equivariance with respect to E(3),
i.e. the group of rotations, reflections, and translations in
3D space.

Neural equivariant interatomic potentials. Given a set of atoms
(a molecule or a material), we aim to find a mapping from atomic
positions f~rig and chemical species {Zi} to the total potential
energy Epot and the forces acting on the atoms f~Fig. Following
previous work4, this total potential energy is obtained as a sum of
atomic potential energies. Forces are then obtained as the gra-
dients of this predicted total potential energy with respect to the
atomic positions (thereby guaranteeing energy conservation):

Epot ¼ ∑
i2Natoms

Ei;atomic ð2Þ

~Fi ¼ �∇iEpot ð3Þ
The atomic local energies Ei,atomic are the scalar node attributes
predicted by the graph neural network. Even though the output of
NequIP is the predicted potential energy Epot, which is invariant
under translations, reflection, and rotations, the network contains
internal features that are geometric tensors which are equivariant
to rotation and reflection. This constitutes the core difference
between NequIP and existing scalar-valued invariant GNN-IPs.

A series of methods has been introduced to realize rotationally
equivariant neural networks13,20,28–30. Here, we build on the
layers introduced in Tensor-Field Networks (TFN)20, primitives
for which are implemented in e3nn31, which enable the
construction of neural networks that exhibit invariance to
translation and equivariance to parity, and rotation. Every atom

in NequIP is associated with features comprised of tensors of
different orders: scalars, vectors, and higher-order tensors.
Formally, the feature vectors are geometric objects that comprise
a direct sum of irreducible representations of the O(3) symmetry
group. The feature vectors V ðl;pÞ

acm are indexed by keys l, p, where
the “rotation order” l= 0, 1, 2,... is a non-negative integer and
parity is one of p∈ (1, −1) which together label the irreducible
representations of O(3). The indices a, c, m, correspond to the
atoms, the channels (elements of the feature vector), and the
representation index which takes values m∈ [−l, l], respectively.
The convolutions that operate on these geometric objects are
equivariant functions instead of invariant ones, i.e. if a feature at
layer k is transformed under a rotation or parity transformation,
then the output of the convolution from layer k→ k+ 1 is
transformed accordingly.

Convolution operations are naturally translation invariant,
since their filters act on relative interatomic distance vectors.
Moreover, they are permutation invariant since the sum over
contributions from different atoms is invariant to permutations of
those atoms. Note that while atomic features are equivariant to
permutation of atom indices, globally, the total potential energy
of the system is invariant to permutation. To achieve rotation
equivariance, the convolution filters SðlÞm ð~rijÞ are constrained to be
products of learnable radial functions and spherical harmonics,
which are equivariant under SO(3)20:

SðlÞm ð~rijÞ ¼ RðrijÞY ðlÞ
m ð̂rijÞ ð4Þ

where if ~rij denotes the relative position from central atom i to
neighboring atom j, r̂ij and rij are the associated unit vector and

interatomic distance, respectively, and SðlÞm ð~rijÞ denotes the
corresponding convolutional filter. It should be noted that all
learnable weights in the filter lie in the rotationally invariant
radial function R(rij). This radial function is implemented as a
multi-layer perceptron which outputs together the radial weights
for all filter-feature tensor production interactions:

RðrijÞ ¼ Wnσð:::σðW2σðW1BðrijÞÞÞÞ ð5Þ

where BðrijÞ 2 RNb is a basis embedding of the interatomic
distance of dimension Nb, Wi are weight matrices and σ(x)
denotes the element-wise nonlinear activation function, for which
we use the SiLU activation function32 in our experiments. Radial
Bessel functions and a polynomial envelope function fenv11 are

Fig. 1 The NequIP network architecture. From left to right: (a) a set of atoms is interpreted as an atomic graph with local neighborhoods (b) atomic
numbers are embedded into l= 0 features, which are refined through a series of interaction blocks, creating scalar and higher-order tensor features. An
output block then generates atomic energies, which are pooled to give the total predicted energy. c The interaction block, containing the convolution. d The
convolution combines the product of the radial function R(r) and the spherical harmonic projection of the unit vector r̂ij with neighbouring features via a
tensor product.
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used as the basis for the interatomic distances:

BðrijÞ ¼
2
rc

sinðbπrc rijÞ
rij

f envðrij; rcÞ ð6Þ

where rc is a local cutoff radius, restricting interactions to atoms
closer than some cutoff distance and fenv is the polynomial
defined in11 with p= 6 operating on the interatomic distances
normalized by the cutoff radius

rij
rc
. The use of cutoffs/local atomic

environments allows the computational cost of evaluation to scale
linearly with the number of atoms. Similar to11, at network
initialization, the Bessel roots are set as b= [1, 2,..., Nb], where Nb

is the number of basis functions, and we subsequently optimize
bπ via backpropagation rather than keeping it constant. For
systems with periodic boundary conditions, we use neighbor lists
as implemented in the ASE code33 to identify appropriate atomic
neighbors.

Finally, in the convolution, the input atomic feature tensor and
the filter have to again be combined in an equivariant manner,
which is achieved via a geometric tensor product that yields an
output feature that again is rotationally equivariant. A tensor
product of two geometric tensors is computed via contraction
with the Clebsch-Gordan coefficients, as outlined in20. A tensor
product between an input feature of order li and a convolutional
filter of order lf yields irreducible representations of output orders
∣li− lf ∣≤lo ≤ ∣li+ lf ∣. In NequIP, we use a maximum rotation
order lmax and discard all tensor product operations that would
results in irreducibe representations with lo > lmax. Omitting all
higher-order interactions that go beyond the 0⊗ 0→ 0 interac-
tion will result in a conventional GNN-IP with invariant
convolutions over scalar features, similar to e.g. SchNet9.

The final symmetry the network needs to respect is that of
parity: how the tensor transforms under inversion, i.e.~x ! �~x. A
tensor has even parity (p= 1) if it is invariant to such a
transformation; it has odd parity (p=−1) if its sign flips under
that transformation. Parity equivariance is achieved by only
allowing contributions from a filter and an incoming tensor
feature with parities pf and pi to contribute to an output feature if
the following selection rule is satisfied:

po ¼ pipf ð7Þ
Finally, as outlined in20, a full convolutional layer L implement-
ing an interaction with filter f acting on an input i producing
output o: li⊗ lf→ lo is given by:

Llo;po;lf ;pf ;li;pi
acmo

~ra;V
li;pi
acmi

� �
¼ ∑

mf ;mi

Clo;mo
li;mi;lf ;mf

∑
b2S

ðRðrabÞc;lo;po;lf ;pf ;li;pi Þ

Y
lf
mf
ð̂rabÞVli;pi

bcmi

ð8Þ
where a and b index the central atom of the convolution and
the neighboring atom b∈ S, respectively, and C indicates the
Clebsch-Gordan coefficients. It should be noted that the
placement of indices into sub- and superscript does not carry
specific meaning. Note that the Clebsch-Gordan coefficients do
not depend on the parity of the arguments. There can be multiple
Llo;po
acmo

tensors for a given output rotation order and parity (lo, po)
resulting from different combinations of (li, pi) and (lf, pf); we take
all such possible output tensors with lo ≤ lmax and concatenate
them. We also divide the output of the sum over neighbors byffiffiffiffi
N

p
, where N denotes the average number of neighbors of an

atom. To update the atomic features, the model also uses dense
layers that are applied in an atom-wise fashion with weights
shared across atoms, similar to the self-interaction layers in
SchNet9. While different weights are used for different rotation

orders, the same set of weights is applied for all representation
indices m of a given tensor with rotation order l to maintain
equivariance.

The NequIP network architecture, shown in Fig. 1, is built on
an atomic embedding, followed by a series of interaction blocks,
and finally an output block:

● Embedding: following SchNet, the initial feature is
generated using a trainable embedding that operates on
the atomic number Zi (represented via a one-hot encoding)
alone, implemented via a trainable self-interaction layer.

● Interaction Block: interaction blocks encode interactions
between neighboring atoms: the core of this block is the
convolution function, outlined in equation (8). Features
from different tensor product interactions that yield the
same rotation and parity pair (lo, po) are mixed by linear
atom-wise self-interaction layers. We equip interaction
blocks with a ResNet-style update34: xk+1= f(xk)+ Self -
Interaction(xk), where f is the series of self-interaction,
convolution, concatenation, and self-interaction. The
weights of the Self - Interaction in the preceding formula
are learned separately for each species. Finally, the mixed
features are processed by an equivariant SiLU-based gate
nonlinearity28,32 (even and odd scalars are not gated, but
instead are processed directly by SiLU and tanh nonlinea-
rities, respectively).

● Output Block: the l= 0 features of the final convolution are
passed to an output block, which consists of a set of two
atom-wise self-interaction layers.

For each atom the final layer outputs a single scalar, which is
interpreted as the atomic potential energy. These are then
summed to give the total predicted potential energy of the system
(Equation (2)). Forces are subsequently obtained as the negative
gradient of the predicted total potential energy, thereby ensuring
both energy conservation and rotation-equivariant forces (see
equation (3)).

Experiments. We validate the proposed method on a diverse
series of challenging data sets: first we demonstrate that we
improve upon state-of-the-art accuracy on MD-17, a data set of
small, organic molecules that is widely used for benchmarking
ML-IPs9,11,35–37. Next, we show that NequIP can accurately learn
forces obtained on small molecules at the quantum chemical
CCSD(T) level of theory37. To broaden the applicability of the
method beyond small isolated molecules, we finally explore a
series of extended systems with periodic boundary conditions,
consisting of both surfaces and bulk materials: water in different
phases15,38, a chemical reaction at a solid/gas interface, an
amorphous Lithium Phosphate12, and a Lithium superionic
conductor13. Details of the training procedure are provided in the
Methods section.

MD-17 small molecule dynamics. We first evaluate NequIP on
MD-1735–37, a data set of small organic molecules in which
reference values of energy and forces are generated by ab-initio
MD simulations with DFT. Recently, a recomputed version of the
original MD-17 data with higher numerical accuracy has been
released, termed the revised MD-17 data set39 (an example his-
togram of potential energies and force components can be found
in the Supplementary Information). In order to be able to com-
pare results to a wide variety of methods, we benchmark NequIP
on both data sets. For training and validation, we use a combined
N=1,000 configurations. The mean absolute error in the energies
and force components is shown in Tables 1 and 2. We compare
results using NequIP with those from published leading MLIP
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models. We find that NequIP significantly outperforms invariant
GNN-IPs (such as SchNet9 and DimeNet11), shallow neural
networks (such as ANI40), and kernel-based approaches (such as
GAP5, FCHL19/GPR39,41 and sGDML37). Finally, we compare to
a series of other methods including ACE42, SpookyNet25, and
GemNet24 as well as other equivariant neural networks such as
PaiNN22, NewtonNet23, and UNiTE26. Again, it should be
stressed that PaiNN and NewtonNet are lmax= 1-only versions of
equivariant networks. The results for ACE, GAP, and ANI on the
revised MD-17 data set are those reported in43. Importantly, we
train and test separate NequIP models on both the original and
the revised MD-17 data set, and find that NequIP obtains sig-
nificantly lower energy errors on the revised data set, while the
force accuracy is similar on the two data sets. In line with

previous work39, this suggests that the noise floor on the original
MD-17 data is higher on the energies and that only the results on
the revised MD-17 data set should be used for comparing dif-
ferent methods.

Remarkably, we find that NequIP outperforms all other
methods. The consistent improvements in accuracy compared
to sGDML and FCHL19/GPR are particularly surprising, as these
are based on kernel methods, which typically obtain better
performance than deep neural networks on small training sets.
We run a convergence scan on the rotation order l∈ {0, 1, 2, 3}
and find that increasing the tensor rank beyond l= 1 gives a
consistent improvement. The significant improvement from l= 0
to l= 1 highlights the crucial role of equivariance in obtaining
improved accuracy on this task.

Table 1 Energy and Force MAE for molecules on the original MD-17 data set, reported in units of [meV] and [meV/Å],
respectively, and a training budget of 1000 reference configurations.

Molecule SchNet DimeNet sGDML PaiNN SpookyNet GemNet-(T/Q) NewtonNet UNiTE NequIP (l= 3)

Aspirin Energy 16.0 8.8 8.2 6.9 6.5 – 7.3 – 5.7
Forces 58.5 21.6 29.5 14.7 11.2 9.4 15.1 6.8 8.0

Ethanol Energy 3.5 2.8 3.0 2.7 2.3 – 2.6 – 2.2
Forces 16.9 10.0 14.3 9.7 4.1 3.7 9.1 4.0 3.1

Malonaldehyde Energy 5.6 4.5 4.3 3.9 3.4 – 4.2 – 3.3
Forces 28.6 16.6 17.8 13.8 7.2 6.7 14.0 6.9 5.6

Naphthalene Energy 6.9 5.3 5.2 5.0 5.0 – 5.1 – 4.9
Forces 25.2 9.3 4.8 3.3 3.9 2.2 3.6 2.8 1.7

Salicylic acid Energy 8.7 5.8 5.2 4.9 4.9 – 5.0 – 4.6
Forces 36.9 16.2 12.1 8.5 7.8 5.4 8.5 4.2 3.9

Toluene Energy 5.2 4.4 4.3 4.1 4.1 – 4.1 – 4.0
Forces 24.7 9.4 6.1 4.1 3.8 2.6 3.8 3.1 2.0

Uracil Energy 6.1 5.0 4.8 4.5 4.6 – 4.6 – 4.5
Forces 24.3 13.1 10.4 6.0 5.2 4.2 6.5 4.2 3.3

For GemNet, the best result out of the T/Q versions is presented and for PaiNN the best between force-only and joint force and energy training. For UNiTE, we compare to the “direct-learning” results
reported in26.
Best results are marked in bold.

Table 2 Energy and Force MAE for molecules on the revised MD-17 data set, reported in units of [meV] and [meV/Å],
respectively, and a training budget of 1000 reference configurations.

Molecule FCHL19 UNiTE GAP ANI ACE GemNet-(T/Q) NequIP
(l= 0)

NequIP
(l= 1)

NequIP
(l= 2)

NequIP
(l= 3)

Aspirin Energy 6.2 2.4 17.7 16.6 6.1 – 25.2 3.8 2.4 2.3
Forces 20.9 7.6 44.9 40.6 17.9 9.5 42.2 12.6 8.5 8.2

Azobenzene Energy 2.8 1.1 8.5 15.9 3.6 – 20.3 1.1 0.8 0.7
Forces 10.8 4.2 24.5 35.4 10.9 – 34.4 4.5 3.3 2.9

Benzene Energy 0.3 0.07 0.75 3.3 0.04 – 3.2 0.09 0.06 0.04
Forces 2.6 0.73 6.0 10.0 0.5 0.5 10.3 0.4 0.4 0.3

Ethanol Energy 0.9 0.62 3.5 2.5 1.2 – 2.0 1.0 0.5 0.4
Forces 6.2 3.7 18.1 13.4 7.3 3.6 11.9 6.5 3.5 2.8

Malonaldehyde Energy 1.5 1.1 4.8 4.6 1.7 – 4.4 1.6 0.9 0.8
Forces 10.2 6.6 26.4 24.5 11.1 6.6 23.2 10.3 5.9 5.1

Naphthalene Energy 1.2 0.46 3.8 11.3 0.9 – 14.7 0.4 0.3 0.2
Forces 6.5 2.6 16.5 29.2 5.1 1.9 20.6 2.1 1.4 1.3

Paracetamol Energy 2.9 1.9 8.5 11.5 4.0 – 17.5 2.1 1.4 1.4
Forces 12.2 7.1 28.9 30.4 12.7 – 33.6 9.3 5.9 5.9

Salicylic acid Energy 1.8 0.73 5.6 9.2 1.8 – 11.4 1.0 0.8 0.7
Forces 9.5 3.8 24.7 29.7 9.3 5.3 29.8 5.7 4.2 4.0

Toluene Energy 1.6 0.45 4.0 7.7 1.1 – 9.7 0.5 0.3 0.3
Forces 8.8 2.5 17.8 24.3 6.5 2.2 26.6 2.6 1.8 1.6

Uracil Energy 0.6 0.58 3.0 5.1 1.1 – 10.0 0.6 0.4 0.4
Forces 4.2 3.8 17.6 21.4 6.6 3.8 26.0 4.1 2.9 3.1

For GemNet, the best result out of the T/Q versions is presented. For FCHL19, the best results between energy-only, force-only and joint force and energy training are presented. For UNiTE, we compare
to the “direct-learning" results reported in26.
Best results are marked in bold.
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Force training at quantum chemical accuracy. The ability to
achieve high accuracy on a comparatively small data set facilitates
easier development of Machine Learining Interatomic Potentials
on expensive high-order ab-initio quantum chemical methods,
such as e.g. the coupled cluster method CCSD(T). However, the
high computational cost of CCSD(T) has thus far hindered the
use of reference data structures at this level of theory, prohibited
by the need for large data sets that are required by available NN-
IPs. Leveraging the high data efficiency of NequIP, we evaluate it
on a set of molecules computed at quantum chemical accuracy
(aspirin at CCSD, all others at CCSD(T))37 and compare the
results to those reported for sGDML37 and GemNet24. Results are
show in the Supplementary Information.

Liquid water and ice dynamics. To demonstrate the applicability
of NequIP beyond small molecules, we evaluate the method on a
series of extended systems with periodic boundary conditions. As
a first example we use a joint data set consisting of liquid water
and three ice systems15,38 computed at the PBE0-TS level of
theory. This data set15 contains: (a) liquid water, P= 1bar,
T= 300K, computed via path-integral AIMD, (b) ice Ih,
P= 1bar, T= 273K, computed via path-integral AIMD (c) ice
Ih, P= 1bar, T= 330K, computed via classical AIMD (d) ice Ih,
P= 2.13 kbar, T= 238K, computed via classical AIMD. A
DeepMD NN-IP model was previously trained15 for water and ice
using a joint training set containing 133,500 reference calcula-
tions of these four systems. To assess data efficiency of the
NequIP architecture, we similarly train a model jointly on all four
parts of the data set, but using only 133 structures for training, i.e.
1000x fewer data. The 133 structures were sampled randomly
following a uniform distribution from the full data set available
online which consists of water and ice structures and is made up
of a total of 140,000 frames, coming from the same MD trajec-
tories that were used in the earlier work15. Table 3 compares the
energy and force errors of NequIP trained on the 133 structures
vs DeepMD trained on 133,500 structures. We find that with
1000x fewer training data NequIP significantly outperforms
DeepMD on all four parts of the data set in the error on the force
components. We note that there are 3N force components for
each training frame but only one energy target. Consequently,
one would except that on energies the much larger training set
used for DeepMD would results in an even stronger difference.
We find that while this is indeed the case, the NequIP results on
the liquid phase are surprisingly competitive. Finally, we report
results using three different weightings of energies and forces in
the loss function and see that increasing the energy weighting
results in significantly improved energy errors at the cost of a
small increase in force error. We note that the version of
DeepMD published in15 is not smooth, and a smooth version has

since been proposed44. However,44 does not report results on the
water/ice systems. It would be of interest to investigate the per-
formance of the smooth DeepMD version as a function of
training set size.

Heterogeneous catalysis of formate dehydrogenation. Next, we
apply NequIP to a catalytic surface reaction. In particular, we
investigate the dynamics of formate undergoing dehydrogenation
decomposition (HCOO*→H*+ CO2) on a Cu < 110 > surface
(see Fig. 2). This system is highly heterogeneous: it has both
metallic and covalent types of bonding as well as charge transfer
between the metal and the molecule, making it a particularly
challenging test system. Different states of the molecule also lead
to dissimilar C-O bond lengths45,46. Training structures consist of
48 Cu atoms and 4 atoms of the molecule (HCOO* or CO2+H*).
A NequIP model trained on 2,500 structures obtains MAEs in the
force components of 19.9 meV/Å, 71.3 meV/Å, 13.0 meV/Å, and
47.6 meV/Å, on the four elements C, O, H, and Cu, respectively.
We find from this an average force MAE of 38.4 meV/Å, equally
weighted over these four per-species MAEs, as well as an energy
MAE of 0.50 meV/atom, demonstrating that NequIP is able to
accurately model the interatomic forces for this complex reactive
system. A more detailed analysis of the resulting dynamics will be
the subject of a separate study.

Lithium phosphate amorphous glass formation. To examine the
ability of the model to capture dynamical properties, we demon-
strate that NequIP can describe structural dynamics in amorphous
lithium phosphate with composition Li4P2O7. This material is a
member of the promising family of solid electrolytes for Li-metal
batteries12,47,48, with non-trivial Li-ion transport and phase
transformation behaviors. The data set consists of two 50 ps long
AIMD simulations: one of the molten structure at T= 3000 K and
another of a quenched glass structure at T= 600 K. We train
NequIP on a subset of 1000 structures from the molten trajectory.
Table 4 shows the error in the force components on both the test
set from the AIMD molten trajectory and the full AIMD quen-
ched glass trajectory. To then evaluate the physical fidelity of the
trained model, we use it to run a set of ten MD simulations of
length 50 ps at T= 600 K in the NVT ensemble and compare the
total radial distribution function (RDF) without element distinc-
tion as well as the angular distribution functions (ADF) of the
P–O–O (P central atom) and O–P–P (O central atom) angles
averaged over ten runs to the ab-inito trajectory at the same
temperature. The P–O–O angle corresponds to the tetrahedral
bond angle, while the O–P–P corresponds to a bridging angle
between corner-sharing phosphate tetrahedra (Fig. 2). Fig. 3 shows
that NequIP can accurately reproduce the RDF and the two ADFs,
in comparison with AIMD, after training on only 1000 structures.

Table 3 RMSE of energies and forces on liquid water and the three ices in units of [meV/molecule] and [meV/Å], with energy
errors normalized by the number of molecules in the system.

System NequIP, a) NequIP, b) NequIP, c) DeepMD

Liquid Water Energy – 1.6 1.7 1.0
Forces 11.9 49.4 11.6 40.4

Ice Ih (b) Energy – 2.5 4.3 0.7
Forces 10.2 55.8 9.9 43.3

Ice Ih (c) Energy – 3.9 10.2 0.7
Forces 12.0 27.7 11.7 26.8

Ice Ih (d) Energy – 2.6 12.7 0.8
Forces 9.8 23.2 9.5 25.4

Note that the NequIP models were trained on <0.1% of the training data of DeepMD. NequIP model (a) refers to loss function weighting λF= 1, λE= 0, model (b) to λF= 100, λE= 1, and model c) to
λF= 100, 000, λE= 1.
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This demonstrates that the model generates the glass state and
recovers its dynamics and structure almost perfectly, despite
having seen only the high-temperature molten training data. We
also include results from a longer NequIP-driven MD simulation
of 500 ps, which can be found in the SI.

Lithium thiophosphate superionic transport. To show that
NequIP can model kinetic transport properties from small
training sets at high accuracy, we study Li-ion diffusivity in LiPS
(Li6.75P3S11), a crystalline superionic Li conductor consisting of a
simulation cell of 83 atoms13. MD is widely used to study dif-
fusion; training a ML-IP to the accuracy required to predict
kinetic properties, however, has in the past required large training
set sizes (49 e.g. uses a data set of 30,874 structures to study Li
diffusion in Li3PO4). Here we demonstrate that not only does
NequIP obtain small errors in the energies and force components,
but it also accurately predicts the diffusivity after training on a
data set obtained from an AIMD simulation. Again, we find that
very small training sets lead to highly accurate models, as shown
in Table 4 for training set sizes of 10, 100, 1000 and 2500 struc-
tures. We run a series of MD simulations with the NequIP
potential trained on 2500 structures in the NVT ensemble at the
same temperature as the AIMD simulation for a total simulation
time of 50 ps and a time step of 0.25 fs, which we found
advantageous for the reliability and stability of long simulations.
We measure the Li diffusivity in these NequIP-driven MD
simulations (computed via the slope of the mean square

displacement) started from different initial velocities, randomly
sampled from a Maxwell-Boltzmann distribution. We find a
mean diffusivity of 1.25 × 10−5cm2/s, in excellent agreement with
the diffusivity of 1.37 × 10−5cm2/s computed from AIMD, thus
achieving a relative error of as little as 9%. Fig. 4 shows the mean
square displacements of Li for an example run of NequIP in
comparison to AIMD.

Data efficiency. In the above experiments, NequIP exhibits
exceptionally high data efficiency. It is interesting to consider the
reasons for such high performance and verify that it is connected
to the equivariant nature of the model. First, it is important to
note that each training configuration contains multiple labels: in
particular, for a training set of M first-principles calculations with
structures consisting of N atoms, the energies and force compo-
nents together give a total of M(3N+ 1) labels. In order to gain
insight into the reasons behind increased accuracy and data
efficiency, we perform a series of experiments with the goal of
isolating the effect of using equivariant convolutions. In parti-
cular, we run a set of experiments in which we explicitly turn on
or off interactions of higher order than l= 0. This defines two
settings: first, we train the network with the full set of tensor
features up to a given order l and the corresponding equivariant
interactions. Second, we turn off all interactions involving l > 0,
making the network a conventional invariant GNN-IP, involving
only invariant convolutions over scalar features in a SchNet-style
fashion.

As a first test system we choose bulk water: in particular we use
the data set introduced in50. We train a series of networks with
identical hyperparameters, but vary the training set sizes between
10 and 1000 structures. As shown in Fig. 5, we find that the
equivariant networks with l∈ 1, 2, 3 significantly outperform the
invariant networks with l= 0 for all data set sizes as measured by
the MAE of force components. This suggests that it is indeed the
use of tensor features and equivariant convolutions that enables
the high sample efficiency of NequIP. In addition, it is apparent
that the learning curves of equivariant networks have a different
slope in log-log space. It has been observed that learning curves
typically follow a power-law of the form51: ϵ∝ aNb where ϵ and
N refer to the generalization error and the number of training
points, respectively. The exponent of this power-law (or
equivalently the slope in log-log space) determines how fast a
learning algorithm learns as new data become available. Empirical
results have shown that this exponent typically remains fixed
across different learning algorithms for a given data set, and
different methods only shift the learning curve, leaving the log-log
slope unaffected51. The same trend can also be observed for
various methods on the aspirin molecule in the MD-17 data set

Table 4 NequIP E/F MAE/RMSE for LiPS and Li4P2O7 for
different data set sizes in units of [meV/Å] and [meV/atom].

System Data set size MAE RMSE

LiPS 10 Energy 2.03 2.54
Forces 97.8 132.4

LiPS 100 Energy 0.44 0.56
Forces 25.8 35.0

LiPS 1000 Energy 0.12 0.15
Forces 7.7 10.8

LiPS 2500 Energy 0.08 0.10
Forces 4.7 6.5

Li4P2O7, melt 1000 Energy 0.4 0.8
Forces 34.0 59.5

Li4P2O7, quench 1000 Energy 0.5 0.5
Forces 21.3 34.9

The model for Li4P2O7 was trained exclusively on structures from the melted trajectory. The
reported test errors for the melt are computed on the remaining set of structures from the full
melt trajectory; errors for the quench are computed on the full quench trajectory.

Fig. 2 Benchmark systems. Left: Quenched glass structure of Li4P2O7, including the tetrahedral bond angle (bottom left) and the bridging angle between
corner-sharing phosphate tetrahedra (top right). Right: The formate on Cu system. Perspective view of atomic configurations of (a) bidentate HCOO (b)
monodentate HCOO and (c) CO2 and a hydrogen adatom on a Cu(110) surface. The blue, red, black, and white spheres represent Cu, O, C, and H atoms,
respectively. The subset shown in each subplot is the corresponding top view along the <110> orientation.
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(see Supplementary Information) where across a series of
descriptors and regression models (sGDML, FCHL19, and
PhysNet10,37,41) the learning curves show an approximately
similar log-log slope (results obtained from http://quantum-
machine.org/gdml/#datasets). To our surprise, we observe that
the equivariant NequIP networks break this pattern. Instead they
follow a log-log slope with larger magnitude, meaning that they
learn faster as new data become available. An invariant l= 0
NequIP network, however, displays a similar log-log slope to
other methods, suggesting that it is indeed the equivariant nature
of NequIP that allows for the change in learning behavior.
Further increasing the rotation order l beyond l= 1 again only
shifts the learning curve and does not results in an additional
change in log-log slope. To control for the different number of
weights and features of networks of different rotation order l, we
report weight- and feature-controlled data in the SI. Both show
qualitatively the same effect. The SI also contains results on the
behavior of the energies, when trained jointly with forces. For
details on the training setup and the control experiments, see the
Methods section.

We further note, that in50, a Behler-Parrinello Neural Network
(BPNN) was trained on 1303 structures, yielding a RMSE of
≈120 meV/Å in forces when evaluated on the remaining
290 structures. We find that NequIP l= 2 models trained with
as little as 100 and 250 data points obtain RMSEs of 123.3 meV/
Å and 98.3 meV/Å respectively (note that Fig. 5 shows the
MAE). This provides further evidence that NequIP exhibits
significantly improved data efficiency in comparison with
existing methods.

Discussion
This work introduces NequIP, a novel Machine Learning method
for computing the potential energy and atomic forces of mole-
cules and materials based on E(3)-Equivariant Neural Networks.
The findings lead to a series of interesting questions to consider:
of particular interest is the sample efficiency of the equivariant
NequIP network when compared to the more widely used
invariant representations. In addition to questions around the

effect of equivariance on accuracy and learning dynamics, a clear
theoretical understanding of how the many-body character of
interactions arises in message passing interatomic potentials
remains elusive. Further, a promising direction for future work is
to investigate the potential benefits of explicitly including long-
range interactions and to measure to what extent - if any - these
might be captured by the message passing mechanism. Finally,
while we find that NequIP displays excellent predictive accuracy,
generalization to unseen phases, and remarkably high sample
efficiency, an open challenge that remains is the interpretability of
deep learning interatomic potentials. Energy contributions in
classical interatomic potentials can be explicitly assigned to
individual types of interactions, such as pair-wise bonded terms
or Coulomb or van der Waals non-bonded interactions. The
potential benefits and optimal ways of including such physical
knowledge explicitly into the complex functional forms under-
lying deep learning interatomic potentials still need to be sys-
tematically explored. On the other hand, the simplicity of the
functional form of classical force-fields that allows for this level of
interpretability severely limits their accuracy, presenting an
interesting tension between the two approaches. We expect the
proposed method will enable researchers in computational
chemistry, physics, biology, and materials science to conduct
molecular dynamics simulations of complex reactions and phase
transformations at increased accuracy and efficiency.

Methods
Software: All experiments were run with the nequip software available at github.
com/mir-group/nequipin version 0.3.3, git commit 50ddbfc31bd44e267b7b
b7d2d36d76417b0885ec. In addition, the e3nn library31 was used under
version 0.3.5, PyTorch under version 1.9.052, PyTorch Geometric under version
1.7.253, and Python under version 3.9.6.

Reference Data Sets:
original MD-17: MD-1735–37 is a data set of eight small organic molecules,

obtained from MD simulations at T= 500K and computed at the PBE+vdW− TS
level of electronic structure theory, resulting in data set sizes between 133,770 and
993,237 structures. The data set was obtained from http://quantum-machine.org/
gdml/#datasets. For each molecule, we use 950 configurations for training and 50
for validation, sampled uniformly from the full data set, and evaluate the test error
on all remaining configurations in the data set.

Fig. 3 Structure of Li4P2O7. a Radial Distribution Function, (b) Angular Distribution Function, tetrahedral bond angle, (c) Angular Distribution Function,
bridging oxygen. All are defined as probability density functions; NequIP results are averaged over 10 runs with different initial velocities.

Fig. 4 Lithium Kinetics. Comparison of the Li MSD of AIMD and an
example NequIP trajectory of Li6.75P3S11.

Fig. 5 Learning curves. Log-log plot of the predictive error on the water
data set from50 using NequIP with l∈ {0, 1, 2, 3} as a function of training
set size, measured via the force MAE.
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revised MD-17: The revised MD-17 data set is a recomputed version of MD-17
obtained at the PBE/def2-SVP level of theory. Using a very tight SCF convergence
as well as a very dense DFT integration grid, 100,000 structures39 of the original
MD-17 data set were recomputed. The data set can be downloaded at https://
figshare.com/articles/dataset/Revised_MD17_dataset_rMD17_/12672038. For each
molecule, we use 950 configurations for training and 50 for validation, sampled
uniformly from the full data set, and evaluate the test error on all remaining
configurations in the data set.

Molecules@CCSD/CCSD(T): The data set of small molecules at CCSD and
CCSD(T) accuracy37 contains positions, energies, and forces for five different small
molecules: Asprin (CCSD), Benzene, Malonaldehyde, Toluene, Ethanol (all
CCSD(T)). Each data set consists of 1500 structures with the exception of Ethanol,
for which 2000 structures are available. For more detailed information, we direct
the reader to37. The data set was obtained from http://quantum-machine.org/
gdml/#datasets. The training/validation set consists of a total of 1000 molecular
structures which we split into 950 for training and 50 for validation (sampled
uniformly), and we test the accuracy on all remaining structures (we use the train/
test split provided with the data set, but further split the training set into training
and validation sets).

Liquid Water and Ice: The data set of liquid waters and ice structures15,38 was
generated from classical AIMD and path-integral AIMD simulations at different
temperatures and pressures, computed with a PBE0-TS functional15. The data set
contains a total of 140,000 structures, of which 100,000 are liquid water and 20,000
are Ice Ih b),10,000 are Ice Ih c), and another 10,000 are Ice Ih d). The liquid water
system consists of 64 H2O molecules (192 atoms), while the ice structures consist of
96 H2O molecules (288 atoms). We use a validation set of 50 frames and report the
test accuracy on all remaining structures in the data set.

Formate decomposition on Cu: The decomposition process of formate on Cu
involves configurations corresponding to the cleavage of the C-H bond, initial and
intermediate states (monodentate, bidentate formate on Cu <110>) and final states
(H ad-atom with a desorbed CO2 in the gas phase). Nudged elastic band (NEB)
method was first used to generate an initial reaction path of the C-H bond
breaking. 12 short ab initio molecular dynamics, starting from different NEB
images, were run to collect a total of 6855 DFT structures. The CP2K54 code was
employed for the AIMD simulations. Each trajectory was generated with a time
step of 0.5 fs and 500 total steps. We train NequIP on 2500 reference structures
sampled uniformly from the full data set of 6855 structures, use a validation set of
250 structures and evaluate the mean absolute error on all remaining structures.
Due to the unbalanced nature of the data set (more atoms of Cu than in the
molecule), we use a per-element weighed loss function in which atoms C, H, the
sum of all O atoms, and the sum of all Cu atoms all receive equal weights. We
weight the force term with N2

atoms ¼ 2; 704 and the energy term with 1.
Li4P2O7 glass: The Li4P2O7 ab-initio data were generated using an ab-initio melt-

quench MD simulation, starting with a stoichiometric crystal of 208 atoms (space
group P21/c) in a periodic box of 10.4 × 14.0 × 16.0 Å. The dynamics used the
Vienna Ab-Initio Simulation Package (VASP)55–57, with a generalized gradient
PBE functional58, projector augmented wave (PAW) pseudopotentials59, a NVT
ensemble and a Nosé-Hoover thermostat, a time step of 2 fs, a plane-wave cutoff of
400 eV, and a Γ-point reciprocal-space mesh. The crystal was melted at 3000 K for
50 ps, then immediately quenched to 600 K and run for another 50 ps. The
resulting structure was confirmed to be amorphous by plotting the radial dis-
tribution function of P-P distances. The training was performed only on the molten
portion, and the MD simulations for a quenched simulation. We sample the
training sets uniformly from the full data set of 25,000 AIMD frames. We use a
validation set of 100 structures, and evaluate the model on all remaining structures
of the melt trajectory as well as on the full quench trajectory. The melt data were

shared with a previous study13 and are available at https://doi.org/10.24433/CO.
2788051.v1

LiPS: Lithium phosphorus sulfide (LiPS) based materials are known to exhibit
high lithium ion conductivity, making them attractive as solid-state electrolytes for
lithium-ion batteries. Other examples of known materials in this family of
superionic conductors are LiGePS and LiCuPS-based compounds. The training
data set is taken from a previous study on a graph neural network force field13,
where the LiPS training data were generated using ab-initio MD of an LiPS
structure with Li-vacancy (Li6.75P3S11) consisting of 27 Li, 12 P, and 44 S atoms
respectively. The structure was first equilibrated and then run at 520 K using the
NVT ensemble for 50 ps with a 2.0 fs time step. The full data set contains 25,001
MD frames. We choose training set sizes of 10, 100, 1000, and 2500 frames with a
fixed validation set size of 100.

Liquid Water, Cheng et al.: The training set used in the data efficiency experi-
ments on water consists of 1593 reference calculations of bulk liquid water at the
revPBE0-D3 level of accuracy, with each structure containing 192 atoms, as given
in50. Further information can be found in50. The data set was obtained from
https://github.com/BingqingCheng/ab-initio-thermodynamics-of-water. We sam-
ple the training set uniformly from the full data set and for each experiment also
use a validation set consisting of 100 structures. We then evaluate the error on a
fixed hold-out test set of 190 structures.

Molecular Dynamics Simulations. To run MD simulations, NequIP force out-
puts were integrated with the Atomic Simulation Environment (ASE)33 in which
we implement a custom version of the Nosé-Hoover thermostat. We use this in-
house implementation for the both the Li4P2O7 as well as the LiPS MD simulations.
The thermostat parameter was chosen to match the temperature fluctuations
observed in the AIMD run. The RDF and ADFs for Li4P2O7 were computed with a
maximum distance of 6 Å (RDF) and 2.5Å (both ADFs). The Li4P2O7 MD
simulations were started from the first frame of the AIMD quench simulation and
the LiPS simulation was started from the first frame of the reference AIMD
simulation of the corresponding training data.

Training. Networks are trained using a loss function based on a weighted sum of
energy and a force loss terms:

L ¼ λEjjÊ � Ejj2 þ λF
1
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where N is the number of atoms in the system, Ê is the predicted potential energy,
and λE and λF are the energy- and force-weightings, respectively. While it is helpful
to optimize the weightings as a hyperparameter, we found a relative weighting of
energies to forces of 1 to N2

atoms a suitable default choice. Here the N accounts for
the fact that that potential energy is a global quantity, while the atomic forces are
local quantities and the square accounts for the fact that we use a MSE loss. This
also makes the loss function size invariant. A full set of the weightings used in this
work can be found in table 5.

We normalize the target energies by subtracting the mean potential energy over
the training set and scale both the target energies and target force components by
the root mean square of the force components over the training set. The predicted
atomic energies Êi are scaled and shifted by two learnable per-species parameters
before summing them for the total predicted potential energy Ê:

Ê ¼ ∑
i
σsi Êi þ λsi ð10Þ

where σsi and λsi are learnable per-species parameters indexed by si, the species of
atom i. They are initialized to 1 and 0, respectively.

For the case of the joint training on water and ice, since the liquid water and ice
structures have different numbers of atoms, we do not scale or shift the potential
energy targets or force targets. Instead, we initialize the learnable per-species shift
to the mean per-atom energy and initialize the learnable per-species scale to the
average standard deviation over all force components in the training set.

Learning Curve Experiments. For learning curve experiments on the aspirin
molecule in MD-17, a series of NequIP models with increasing order l∈ {0, 1, 2, 3}
were trained on varying data set sizes. In particular, experiments were performed
with a budget for training and validation of 200, 400, 600, 800, 1000 configurations,
of which 50 samples were used for validation while the remaining ones were used
for training. The reported test error was computed on the entire remaining MD-17
trajectory for each given budget. The weight-controlled version of NequIP was set
up by creating a l= 0 network with increased feature size that matches the number
of weights up to approx. 0.1% of the l= 1 network. The feature-controlled version
of NequIP was set up by creating a l= 0 network with the same number of features
as the l= 1 network, i.e. 4x more features than the original l= 0 network (1 scalar
and 3 vector features), in particular the l= 1 network had a feature configuration of
64x0o+ 64x0e+ 64x1o+ 64x1e while the original l= 0 network used
64x0e and feature-controlled l= 0 network used 512x0e.

Hyperparameters. All models were trained on a NVIDIA Tesla V100 GPU in
single-GPU training using float32 precision. For the small molecule systems, we use
5 interaction blocks, a learning rate of 0.01 and a batch size of 5. For the periodic
systems, we use 6 interaction blocks, a learning rate of 0.005 and a batch size of 1.
We decrease the initial learning rate by a decay factor of 0.8 whenever the vali-
dation loss in the forces has not seen an improvement for 50 epochs. We con-
tinuously save the model with the best validation loss in the forces and use the

Table 5 Tensor rank l, feature size, radial cutoff in units of
[Å], as well as energy and force weights used in the joint
loss function.

Data Set Tensor
rank l

# Features rc λE λF

MD-17 3 64 4.0 1 1000
revMD-17 {0, 1, 2, 3} 64 4.0 1 1000
CCSD/CCSD(T) 3 64 4.0 1 1000
Water
+Ices, DeepMD

2 32 6.0 see 3 see 3

Formate on Cu 2 32 5.0 1 2704
Li4P2O7 2 32 5.0. 1 43,264
LiPS 2 32 5.0 1 6889
Water, Cheng et al. {0, 1, 2, 3} 32 4.5 1 36,864

All models were trained with even and odd features, i.e. a tensor rank of l= 1 and 32 features
corresponds to 32x0o+ 32x0e+ 32x1o+ 32x1e. The force weightings for formate on Cu, LiPO,
LiPS, and the water system for sample efficiency tests stem from N2

atoms .
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model with the overall best validation loss for evaluation on the test set and MD
simulations. For validation and test error evaluation, we use an exponential moving
average of the training weights with weight 0.99. Training is stopped if either of the
following conditions is met: (a) a maximum training time of of approximately
seven days is reached; (b) a maximum number 1,000,000 epochs is reached; (c) the
learning rate drops below 10−6; (d) the validation loss does not improve for 1000
epochs. We note that competitive results can typically be obtained within a matter
of hours or often even minutes and most of the remaining training time is spent on
only small improvements in the errors. We found the use of small batch sizes to be
an important hyperparameter. We also found it important to choose the radial
cutoff distance rc appropriately for a given system. In addition, we observed the
number of layers to not have a strong effect as long as they were set within a
reasonable range. We use different numbers of l and feature dimensions for dif-
ferent systems and similarly also vary the cutoff radius for different systems. A full
outline of the choices for l, feature size, cutoff radius as well as the weights for
energies and forces in the loss function can be found in 5. All models were trained
with both even and odd features. The weights were initialized according to a
standard normal distribution (for details, see the e3nn software implementation31).
The invariant radial networks act on a trainable Bessel basis of size 8 and were
implemented with three hidden layers of 64 neurons with SiLU nonlinearities
between them. The even scalars of the final interaction block are passed to the
output block, which first reduces the feature dimension to 16 even scalars through a
self-interaction layer. Finally, through another self-interaction layer, the feature
dimension is reduced to a single scalar output value associated with each atom
which is then summed over to give the total potential energy. Forces are obtained as
the negative gradient of this predicted total potential energy, computed via auto-
matic differentiation. All models were optimized with Adam with the AMSGrad
variant in the PyTorch implementation60–62 with β1= 0.9, β2= 0.999, and ϵ= 10−8

without weight decay. The average number of neighbors used for the 1ffiffiffi
N

p normal-
ization of the convolution was computed over the full training set. For all molecular
results, the average number of neighbors was computed once on the N= 1000 case
for revised MD-17 and used for all other experiments. For the water sample effi-
ciency and the LiPS experiments it was computed once on the N=1000 and
N=2500 cases, respectively and then used for all other experiments for that system.
The input files for training of NequIP models can be found at https://github.com/
mir-group/nequip-input-files.

Data availability
The Formate on Cu data set, the Li6.75P3S11 data set, as well as the quench data for
Li4P2O7 have been deposited in the MaterialsCloud data base at https://doi.org/10.24435/
materialscloud:s0-5n.

Code availability
An open-source software implementation of NequIP is available at https://github.com/
mir-group/nequip.
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