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Abstract

Autoregressive models (ARMs) are widely re-
garded as the cornerstone of large language mod-
els (LLMs). We challenge this notion by intro-
ducing LLaDA, a diffusion model trained from
scratch under the pre-training and supervised fine-
tuning (SFT) paradigm. LLaDA models distri-
butions through a forward data masking process
and a reverse process, parameterized by a vanilla
Transformer to predict masked tokens. By op-
timizing a likelihood bound, it provides a prin-
cipled generative approach for probabilistic in-
ference. Across extensive benchmarks, LLaDA
demonstrates strong scalability, outperforming
our self-constructed ARM baselines. Remark-
ably, LLaDA 8B is competitive with strong LLMs
like LLaMA3 8B in in-context learning and, af-
ter SFT, exhibits impressive instruction-following
abilities in case studies such as multi-turn dia-
logue. Moreover, LLaDA addresses the rever-
sal curse, surpassing GPT-40 in a reversal poem
completion task. Our findings establish diffu-
sion models as a viable and promising alternative
to ARMs, challenging the assumption that key
LLM capabilities discussed above are inherently
tied to ARMs. Project page and codes: https:
//ml-gsai.github.io/LLaDA-demo/.

1. Introduction

What is now proved was once only imagined.
—William Blake

Large language models (LLMs) (Zhao et al., 2023) fall en-
tirely within the framework of generative modeling. Specifi-
cally, LLMs aim to capture the true but unknown language
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Figure 1. Zero/Few-Shot Benchmarks. We scale LLaDA to an
unprecedented size of 8B parameters from scratch, achieving com-
petitive performance with strong LLMs (Dubey et al., 2024).

distribution pyy. () by optimizing a model distribution py(-)
through maximum likelihood estimation, or equivalently KL
divergence minimization between the two distributions:

max By, () log po(2) < minKL(paua(@)[|po(2)) . (1)

Generative modeling principles

The predominant approach relies on the autoregressive mod-
eling (ARM)—commonly referred to as the next-token pre-
diction paradigm—to define the model distribution:

L
po(x) =po(a") [[po(a’ | 2", .27 h), @
=2

Autoregressive formulation

where z is a sequence of length L, and 2’ is the i-th token.

This paradigm has proven remarkably effective (Radford,
2018; Radford et al., 2019; Brown, 2020; OpenAl, 2022)
and has become the foundation of current LLMs. Despite
its widespread adoption, a fundamental question remains
unanswered: Is the autoregressive paradigm the only viable
path to achieving the intelligence exhibited by LLMs?
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We argue that the answer is not a simple “yes”. The key
insight overlooked previously is: it is the generative mod-
eling principles (i.e., Eq. (1)), rather than the autoregres-
sive formulation (i.e., Eq. (2)) itself, that fundamentally
underpin the essential properties of LLMs, as detailed be-
low. However, certain inherent limitations of LLMs can be
directly traced to their autoregressive nature.

In particular, we argue that scalability is primarily a con-
sequence of the interplay between Transformers (Vaswani,
2017), model and data size, and Fisher consistency' (Fisher,
1922) induced by the generative principles in Eq. (1), rather
than a unique result of ARM. The success of diffusion trans-
formers (Bao et al., 2023; Peebles & Xie, 2023) on visual
data (Brooks et al., 2024) supports this claim.

Furthermore, the capabilities of instruction-following and
in-context learning (Brown, 2020) appear to be intrinsic
properties of all proper conditional generative models on
structurally consistent linguistic tasks, rather than exclusive
advantages of ARMs. In addition, while ARMs can be
interpreted as a lossless data compressor (Deletang et al.;
Huang et al., 2024b), any sufficiently expressive probabilis-
tic model can achieve similar capabilities (Shannon, 1948).

Nevertheless, the autoregressive nature of LLMs presents
notable challenges. For example, sequential token-by-token
generation incurs high computational costs, and the left-
to-right modeling limits effectiveness in reversal reasoning
tasks (Berglund et al., 2023). These inherent limitations
constrain LLMs in handling longer and more complex tasks.

Motivated by these insights, we introduce LLaDA, a Large
Language Diffusion with mAsking, to investigate whether
the capabilities exhibited by LLMs can emerge from gener-
ative modeling principles beyond ARMs in Eq. (2), thereby
addressing the fundamental question posed earlier. In con-
trast to traditional ARMs, LLaDA leverages a masked diffu-
sion model (MDM) (Austin et al., 2021a; Lou et al., 2023;
Shi et al., 2024; Sahoo et al., 2024; Ou et al., 2024), which
incorporates a discrete random masking process and trains
a mask predictor to approximate its reverse process. This
design enables LLaDA to construct a model distribution
with bidirectional dependencies and optimize a lower bound
of its log-likelihood, offering an unexplored and principled
alternative to existing LLMs.

We adopt the standard pipeline of data preparation, pre-
training, supervised fine-tuning (SFT), and evaluation, scal-
ing LLaDA to an unprecedented language diffusion of size
8B. In particular, LLaDA 8B was pre-trained from scratch
on 2.3 trillion tokens using 0.13 million H800 GPU hours,
followed by SFT on 4.5 million pairs. Across diverse tasks,
including language understanding, math, code, and Chinese,

Tt suggests the ability to recover the true data distribution with
infinite data, a sufficiently large network and optimal training.

LLaDA demonstrates the following contributions:

Scalability. LLaDA scales effectively up to a computational
budget of 1023 FLOPs, achieving comparable results to self-
constructed ARM baselines trained on the same data across
six tasks, e.g., MMLU and GSMS8K.

In-Context Learning. Remarkably, LLaDA 8B surpasses
LLaMA?2 7B (Touvron et al., 2023) on nearly all 15 standard
zero/few-shot learning tasks while performing on par with
LLaMA3 8B (Dubey et al., 2024).

Instruction-Following. LLaDA significantly enhances the
ability to follow instructions after SFT, as demonstrated in
case studies such as multi-turn dialogue.

Reversal Reasoning. LLaDA effectively breaks the re-
versal curse (Berglund et al., 2023) with consistent per-
formance across forward and reversal tasks. Notably, it
outperforms GPT-40 in a reversal poem completion task.

2. Approach

In this section, we introduce the probabilistic formulation?,
along with the pre-training, supervised fine-tuning, and in-
ference procedures for LLaDA, as illustrated in Fig. 2.

2.1. Probabilistic Formulation

Unlike ARMs in Eq. (2), LLaDA defines a model distribu-
tion pg(zo) through a forward process and a reverse pro-
cess (Austin et al., 2021a; Ou et al., 2024). The forward
process gradually masks tokens independently in xg until
the sequence is fully masked at ¢ = 1. For ¢t € (0,1), the
sequence x; is partially masked, with each being masked
with probability ¢ or remaining unmasked with probability
1 — t. The reverse process recovers the data distribution by
iteratively predicting masked tokens as ¢ moves from 1 to 0.

The core of LLaDA is a mask predictor, a parametric model
po(-|x¢) that takes x; as input and predicts all masked tokens
(denoted M) simultaneously. It is trained using a cross-
entropy loss computed only on the masked tokens:

L
1 . .
L£(0) & ~Bray . | 7D Ut =M]logps(ailze) |, O)
i=1

where z( is sampled from the training data, ¢ is sampled
uniformly from [0, 1], and z; is sampled from the forward
process. The indicator function 1[-] ensures that the loss is
computed only for masked tokens.

Once trained, we can simulate a reverse process (see Sec. 2.4
for details) parameterized by the mask predictor and define
the model distribution py(x() as the marginal distribution

Here, we focus on the approach of LLaDA. A rigorous formu-
lation of MDM is provided in Appendix A for interested readers.
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Figure 2. A Conceptual Overview of LLaDA. (a) Pre-training. LLaDA is trained on text with random masks applied independently to all
tokens at the same ratio t ~ U0, 1]. (b) SFT. Only response tokens are possibly masked. (c) Sampling. LLaDA simulates a diffusion
process from ¢ = 1 (fully masked) to ¢ = 0 (unmasked), predicting all masks simultaneously at each step with flexible remask strategies.

induced at ¢ = 0. Notably, the loss in Eq. (3) has been
proven to be an upper bound on the negative log-likelihood
of the model distribution (Shi et al., 2024; Ou et al., 2024):

7]Epdata($0) [10gp9(x0)] < ‘C(g)a @

making it a principled objective for generative modeling.

Notably, LLaDA employs a masking ratio that varies ran-
domly between 0 and 1 while masked language models (De-
vlin, 2018) use a fixed ratio. The subtly differences have
significant implications, especially at scale: as shown in
Eq. (4), LLaDA is a principled generative model with the
potential to perform in-context learning naturally, akin to
LLMs. Moreover, its generative perspective ensures Fisher
consistency (Fisher, 1922) in extreme cases, suggesting
strong scalability with large data and models.

2.2. Pre-training

LLaDA employs a Transformer (Vaswani, 2017) as the mask
predictor, whose architecture is similar to existing LLMs.
However, LLaDA does not use a causal mask, as its formu-
lation allows it to see the entire input for predictions.

We trained two variants of LLaDA with different sizes: 1
billion (B) and 8B. We summarize the model architecture
of LLaDA 8B and LLaMA3 8B (Dubey et al., 2024) here
and details are provided in Appendix B.2. We have ensured
consistency in most hyperparameters while making several
necessary modifications. We use vanilla multi-head atten-
tion instead of grouped query attention (Ainslie et al., 2023)
for simplicity, as LLaDA is incompatible with KV caching,
resulting in a different number of key and value heads. Con-
sequently, the attention layer has more parameters, and we
reduce the FFN dimension to maintain a comparable model
size. Additionally, the vocabulary size differs slightly due
to a tokenizer (Brown, 2020) adapted on our data.

The LLaDA model is pre-trained on a dataset comprising
2.3 trillion (T) tokens, adhering to a data protocol that aligns

closely with existing large language models (LLMs) (Tou-
vron et al., 2023; Chu et al., 2024), without the incorporation
of any special techniques. The data are derived from online
corpora, with low-quality content filtered through manually
designed rules and LLM-based approaches. Beyond general
text, the dataset encompasses high-quality code, math, and
multilingual data. The mixing of data sources and domains
is guided by scaled-down ARMs. The pre-training process
utilizes a fixed sequence length of 4096 tokens, incurring a
total computational cost of 0.13 million HS00 GPU hours,
similar to ARMs of the same scale and dataset size.

For a training sequence xo, we randomly sample ¢ € [0, 1],
mask each token independently with the same probability
t to obtain x; (see Fig. 2 (a)) and estimate Eq. (3) via the
Monte Carlo method for stochastic gradient descent training.
In addition, following Nie et al. (2024), to enhance the
ability of LLaDA to handle variable-length data, we set 1%
of the pre-training data to a random length that is uniformly
sampled from the range [1,4096].

We adopted the Warmup-Stable-Decay (Hu et al., 2024)
learning rate scheduler to monitor the training progress
without interrupting continuous training. Specifically, we
linearly increased the learning rate from 0 to 4 x 10~% over
the first 2000 iterations and maintained it at 4 x 10~%. After
processing 1.2T tokens, we decayed the learning rate to
1 x 10~* and held it constant for the next 0.8T tokens to en-
sure stable training. Finally, we linearly reduced the learning
rate from 1 x 104 to 1 x 10~° for the last 0.3T tokens. Fur-
thermore, we utilized the AdamW optimizer (Loshchilov,
2017) with a weight decay of 0.1, a batch size of 1280, and
a local batch size of 4 per GPU. The 8B experiment was
executed once, without any hyperparameter tuning.

2.3. Supervised Fine-Tuning

We enhance the capability of LLaDA to follow instructions
by supervised fine-tuning (SFT) with paired data (pg, 7o),
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where pg is the prompt and 7o denotes the response. This
is the simplest and most basic post-training method for
LLMs. Technically, this requires to model the conditional
distribution pg(ro|po) instead of pg(xg) in pre-training.

The implementation is similar to pre-training. As shown in
Fig. 2 (b), we leave the prompt unchanged and mask the
tokens in the response independently, as done for x. Then,
we feed both the prompt and the masked response r; to the
pre-trained mask predictor to compute the loss for SFT:

L/
1 . .
_Et;PO,TOJ‘t ; Z 1[7"; = M] 1ng9 (r(g‘p()a Tt) 1) (5)

i=1

where L’ denotes a dynamic length specified later, and all
other notations remain the same as before.

Note that this approach is fully compatible with pre-training.
Essentially, the concatenation of py and g can be treated
as clean pre-training data z, while the concatenation of
po and 7, serves as the masked version x;. The process is
identical to pre-training, with the only difference being that
all masked tokens happen to appear in the r( portion.

The LLaDA 8B model undergoes SFT on a dataset com-
prising 4.5 million pairs. Consistent with the pre-training
process, both data preparation and training follow the SFT
protocols utilized in existing LLMs (Chu et al., 2024; Yang
et al., 2024), without introducing any additional techniques
to optimize LLaDA’s performance. The dataset spans mul-
tiple domains, including code, mathematics, instruction-
following, and structured data understanding. We append
|[EOS]| tokens to the end of short pairs in each mini-batch
to ensure equal lengths across all data. We treat [EOS]| as a
normal token during training and remove it during sampling,
enabling LLaDA to control the response length automati-
cally. Please refer to Appendix B.1 for more details.

We train for 3 epochs on the SFT data using a similar sched-
ule to the pre-training phase. The learning rate is linearly
increased from 0 to 2.5 x 10~ over the first 50 iterations
and then kept constant. During the final 10% of iterations,
it is linearly reduced to 2.5 x 10~%. Additionally, we set
the weight decay to 0.1, the global batch size to 256, and
the local batch size to 2 per GPU. The SFT experiment was
executed once, without any hyperparameter tuning.

2.4. Inference

As a generative model, LLaDA is capable of both sampling
new text and evaluating the likelihood of candidate text.

We begin with the sampling. As illustrated in Fig. 2 (c),
given a prompt pg, we discretize the reverse process to sam-
ple from the model distribution pg(ro|po), starting from a
fully masked response. The total number of sampling steps
is a hyperparameter, which naturally provides LLaDA with a

trade-off between efficiency and sample quality, as analyzed
in Sec. 3.3. We employ uniformly distributed timesteps by
default. In addition, the generation length is also treated as
a hyperparameter, specifying the length of the fully masked
sentence at the beginning of the sampling process. As de-
tailed in Appendix B.4, since both pre-training and SFT
are conducted using datasets with variable lengths, the final
results are insensitive to this length hyperparameter.

At an intermediate step from time ¢ € (0, 1] to s € [0, ), we
feed both pg and r; into the mask predictor and predict all
masked tokens simultaneously. Subsequently, we remask %
of the predicted tokens in expectation to obtain r, ensuring
that the transition of the reverse process aligns with the
forward process for accurate sampling (Austin et al., 2021a).

In principle, the remasking strategy should be purely ran-
dom. However, inspired by the annealing tricks of sampling
in LLMs (Holtzman et al., 2019; Brown, 2020), we explore
two deterministic yet effective remasking strategies. Specif-
ically, similarly to Chang et al. (2022), we remask the $
of predicted tokens with the lowest confidence based on
the predictions, called low-confidence remasking. Addition-
ally, for LLaDA after SFT, we can divide the sequence into
several blocks and generate them from left to right, called
semi-autoregressive remasking. Within each block, we ap-
ply the reverse process to perform sampling. We provide
more details and ablation studies in Appendix. B.3.

For conditional likelihood evaluation, we can naturally uti-
lize the upper bound in Eq. (5). However, we find that the
following equivalent form (Ou et al., 2024) exhibits lower
variance and is more stable for evaluation:

L
L X )
_E’Lro,m 7 Z I[le = M] Inge(T6|po, rl) y (6)
1=1

where [ is uniformly sampled from {1,2,..., L}, and r; is
obtained by uniformly sampling [ tokens from ry without
replacement for masking. In addition, we employ the unsu-
pervised classifier-free guidance (Nie et al., 2024). We refer
the readers to more details in Appendix A.2.

We present the training, sampling, and likelihood evaluation
algorithms, along with theoretical details, in Appendix A.

3. Experiments

We evaluate the scalability, instruction-following, and in-
context learning capabilities of LLaDA on standard bench-
marks, followed by analyses and case studies on more con-
trolled datasets to provide a comprehensive assessment.

3.1. Scalability of LLaDA on Language Tasks

We first investigate the scalability of LLaDA on downstream
tasks in comparison with the ARM baselines we constructed.
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Figure 3. Scalability of LLaDA. We evaluate the performance of LLaDA and our ARM baselines trained on the same data across
increasing computational FLOPs. LLaDA exhibits strong scalability, matching the overall performance of ARMs on six tasks.

Specifically, at the 1B scale, we ensured that LLaDA and
ARM shared the same architecture, data, and all other config-
urations. At larger scales, we also report results for LLaDA
and ARM models of slightly different sizes trained on the
same data due to resource limit, as detailed in Appendix B.2.
We use the computational cost as a unified scaling metric.
For evaluation, we focused on six standard and diverse tasks.

As shown in Fig. 3, LLaDA demonstrates impressive scala-
bility, with its overall trend being highly competitive with
that of ARM. Notably, in tasks such as MMLU and GSM&8K,
LLaDA exhibits even stronger scalability. Even on tasks like
PIQA, where performance lags, LLaDA narrows the gap
with ARMs at larger scales. To account for the significant
influence of outliers, we opted not to fit quantitative scaling
curves, avoiding potential misinterpretation. Nevertheless,
the results clearly demonstrate the scalability of LLaDA.

Nie et al. (2024) suggests that MDM requires 16 times
more computation than ARM to achieve the same likeli-
hood. However, there are key differences that make the
conclusions of this study more broadly applicable. In partic-
ular, likelihood is a relatively indirect metric for downstream
task performance, and diffusion optimizes a bound of the
likelihood, making it not directly comparable to ARM. Ad-
ditionally, we extended the scaling range from 10'® ~ 1020
in Nie et al. (2024) to 10%° ~ 1023 in this work.

3.2. Benchmark Results

To comprehensively evaluate the in-context learning and
instruction-following capabilities of LLaDA 8B, we con-
ducted detailed comparisons with existing LLMs (Touvron

et al., 2023; Dubey et al., 2024; Chu et al., 2024; Yang et al.,
2024; Bi et al., 2024; Jiang et al., 2023) of similar scale.
The selection of tasks and evaluation protocols was aligned
with existing studies, encompassing 15 popular benchmarks
in general tasks, mathematics, code, and Chinese. Further
details are provided in Appendix B.5. For a more direct
comparison, we re-evaluated representative LLMs (Touvron
et al., 2023; Dubey et al., 2024) in our implementation.

As shown in Tab. 1, after pretraining on 2.3T tokens,
LLaDA 8B demonstrates remarkable performance, surpass-
ing LLaMA?2 7B on nearly all tasks, and is overall competi-
tive with LLaMA3 8B. LLaDA shows advantages in math
and Chinese tasks. We conjecture that the strengths stem
from the same factors as its relatively weaker performance
in some tasks—differences in data quality and distribution,
largely due to the closed-source situation of LLM datasets.

Notably, we have carefully ruled out the possibility of data
leakage by taking GSMS8K as an example. First, as shown
in Fig. 3, LLaDA outperformed ARM baselines regarding
GSMSK. Moreover, the conclusion remains on a fully un-
seen GSM8K-like task (Ye et al., 2024) in Appendix B.7.

Further, Tab. 2 compares the performance of LLaDA 8B In-
struct with existing LLMs. We observed that SFT improved
LLaDA’s performance on most downstream tasks. A few
metrics, such as MMLU, showed declines, and we conjec-
ture may be due to the suboptimal quality of the SFT data.
Overall, since we did not perform alignment with reinforce-
ment learning (RL), our results are slightly behind LLaMA3
8B Instruct, though the gaps in many metrics remain small.
Notably, even with only SFT, LLaDA demonstrates impres-
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Table 1. Benchmark Results of Pre-trained LLMs. * indicates that LLaDA 8B Base, LLaMA2 7B Base, and LLaMA3 8B Base are
evaluated under the same protocol, detailed in Appendix B.5. Results indicated by ™ and ¥ are sourced from Chu et al. (2024); Yang et al.
(2024) and Bi et al. (2024) respectively. The numbers in parentheses represent the number of shots used for evaluation. “-” indicates
unknown data.

| LLaDA 8B* LLaMA3 8B* LLaMA27B* | Qwen2 7Bf Qwen2.57Bf Mistral 7B  Deepseek 7BY

Model Diffusion AR AR AR AR AR AR
Training tokens 23T 15T 2T 7T 18T - 2T
General Tasks
MMLU 65.9 (5) 65.4 (5) 45.9 (5) 70.3 (5) 74.2 (5) 64.2 (5) 48.2 (5)
BBH 49.8 (3) 57.6 (3) 37.3(3) 62.3 (3) 70.4 (3) 56.1 (3) 39.5(3)
ARC-C 47.9 (0) 53.1 (0) 46.3 (0) 60.6 (25) 63.7 (25) 60.0 (25) 48.1 (0)
Hellaswag 72.5 (0) 79.1 (0) 76.0 (0) 80.7 (10) 80.2 (10) 83.3 (10) 75.4 (0)
Truthful QA 46.4 (0) 44.0 (0) 39.0 (0) 54.2 (0) 56.4 (0) 42.2 (0) -
WinoGrande 74.8 (5) 77.3(5) 72.5(5) 77.0 (5) 75.9 (5) 78.4 (5) 70.5 (0)
PIQA 74.4 (0) 80.6 (0) 79.1 (0) - - - 79.2 (0)
Mathematics & Science
GSMSK 70.7 (4) 53.1 (4) 14.3 (4) 80.2 (4) 85.4 (4) 36.2 (4) 17.4 (8)
Math 273 (4) 15.1 4) 3214 43.54) 49.8 (4) 10.2 (4) 6.0 (4)
GPQA 26.1 (5) 259 (5) 25.7 (5) 30.8 (5) 36.4 (5) 24.7 (5) -
Code
HumanEval 33.5(0) 34.2 (0) 12.8 (0) 51.2 (0) 57.9 (0) 29.3 (0) 26.2 (0)
HumanEval-FIM 73.8 (2) 73.3(2) 26.9 (2) - - - -
MBPP 38.2 (4) 47.4 (4) 18.4 (4) 64.2 (0) 74.9 (0) 51.1 (0) 39.0 (3)
Chinese

CMMLU 69.9 (5) 50.7 (5) 32.5(5) 83.9 (5) - - 47.2 (5)
C-Eval 70.5 (5) 51.7 (5) 34.0 (5) 83.2 (5) - - 45.0 (5)

Table 2. Benchmark Results of Post-trained LLMs. LLaDA only employs an SFT procedure while other models have extra reinforcement
learning (RL) alignment. * indicates that LLaDA 8B Instruct, LLaMA?2 7B Instruct, and LLaMA3 8B Instruct are evaluated under the
same protocol, detailed in Appendix B.5. Results indicated by ™ and ¥ are sourced from Yang et al. (2024) and Bi et al. (2024) respectively.
The numbers in parentheses represent the number of shots used for in-context learning. “-” indicates unknown data.

| LLaDA 8B* LLaMA3 8B* LLaMA27B* | Qwen2 7BT Qwen2.5 7B Gemma2 9B' Deepseek 7BY

Model Diffusion AR AR AR AR AR AR
Training tokens 23T 15T 2T 7T 18T 8T 2T
Post-training SFT SFT+RL SFT+RL SFT+RL SFT+RL SFT+RL SFT+RL
Alignment pairs 4.5M - - 0.5M + - IM + 0.15M - 1.5M + -
General Tasks
MMLU 65.5(5) 68.4 (5) 44.1 (5) - - - 49.4 (0)
MMLU-pro 37.0 (0) 41.9 (0) 4.6 (0) 44.1 (5) 56.3 (5) 52.1(5) -
Hellaswag 74.6 (0) 75.5 (0) 51.5 (0) - - - 68.5 (-)
ARC-C 88.5 (0) 82.4 (0) 57.3 (0) - - - 494 (-)
Mathematics & Science
GSMS8K 78.6 (4) 78.3 (4) 29.0 (4) 85.7 (0) 91.6 (0) 76.7 (0) 63.0 (0)
Math 26.6 (0) 29.6 (0) 3.8 (0) 52.9 (0) 75.5 (0) 44.3 (0) 15.8 (0)
GPQA 31.8 (5) 31.9(5) 28.4 (5) 34.3 (0) 36.4 (0) 32.8 (0) -
Code

HumanEval 47.6 (0) 59.8 (0) 16.5 (0) 79.9 (0) 84.8 (0) 68.9 (0) 48.2 (-)
MBPP 34.2 (4) 57.6 (4) 20.6 (4) 67.2 (0) 79.2 (0) 74.9 (0) 352 ()
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Table 3. Comparison in the Poem Completion Task.

Forward Reversal

GPT-40 (2024-08-06) 82.7 343
Qwen2.5 7B Instruct 75.9 38.0
LLaDA 8B Instruct 48.8 42.4

sive instruction-following abilities, as detailed in Sec. 3.4.
We leave RL-based alignment for future work.

Overall, despite the lack of data transparency, we have made
every effort to adopt standardized procedures and introduce
diverse tasks, we believe they sufficiently demonstrate the
extraordinary capabilities of LLaDA, which is the only com-
petitive non-autoregressive model to our knowledge.

3.3. Reversal Reasoning and Analyses

To quantify the reversal reasoning ability of mod-
els (Berglund et al., 2023), we follow the protocol estab-
lished in Allen-Zhu & Li (2023). Specifically, we construct
a dataset of 496 famous Chinese poem sentence pairs. Given
a sentence from a poem, models are tasked with generating
the subsequent line (forward) or the preceding line (rever-
sal) without additional fine-tuning. Examples can be found
in Appendix B.8. This setting provides a straightforward
and more realistic evaluation compared to previous stud-
ies (Nie et al., 2024; Kitouni et al., 2024).

As shown in Tab. 3, LLaDA effectively addresses the rever-
sal curse (Berglund et al., 2023), demonstrating consistent
zero-shot performance across both forward and reversal
tasks. In contrast, both Qwen 2.5 and GPT-40 exhibit a
significant gap between the two. The results on forward
generation confirm that both ARMs are strong, benefiting
from significantly larger datasets and greater computational
resources than LLaDA. However, LLaDA outperforms both
by a large margin in the reversal task.

We emphasize that we did not design anything special for
reversal tasks. Intuitively, LLaDA treats tokens uniformly
without inductive bias, leading to balanced performance.
See more details in Appendix A.2.

We also analyze the effect of remasking strategies and sam-
pling steps, as detailed in Appendix B.3 and Appendix B.6.

3.4. Case Studies

We present samples generated by LLaDA 8B Instruct in
Tab. 4, showcasing its instruction-following capabilities.
First, the table illustrates LLaDA’s ability to generate co-
herent, fluent, and extended text in a non-autoregressive
manner. Second, it highlights the model’s multi-turn dia-
logue capability, effectively retaining conversation history

and producing contextually appropriate responses across
multiple languages. Such chat capabilities of LLaDA are
impressive, as it departs from conventional ARMs for the
first time, to the best of our knowledge. See more case
studies on remasking and reasoning tasks in Appendix B.9.

4. Related Work

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020) have excelled in visual domains but
remain unverified for LLMs despite extensive efforts.

A simple approach is to continuousize text data and apply
diffusion models directly (Li et al., 2022; Gong et al., 2022;
Han et al., 2022; Strudel et al., 2022; Chen et al., 2022;
Dieleman et al., 2022; Richemond et al., 2022; Wu et al.,
2023; Mahabadi et al., 2024; Ye et al., 2023b). Alternatively,
some methods model continuous parameters of discrete dis-
tributions instead (Lou & Ermon, 2023; Graves et al., 2023;
Lin et al., 2023; Xue et al., 2024). However, scalability
remains a challenge, as a 1B parameter model requires 64
times the compute of an ARM to achieve comparable per-
formance (Gulrajani & Hashimoto, 2024).

Another approach replaces continuous diffusion with dis-
crete processes featuring new forward and reverse dy-
namics (Austin et al., 2021a), leading to numerous vari-
ants (Hoogeboom et al., 2021b;a; He et al., 2022; Campbell
et al., 2022; Meng et al., 2022; Reid et al., 2022; Sun et al.,
2022; Kitouni et al., 2023; Zheng et al., 2023; Chen et al.,
2023; Ye et al., 2023a; Gat et al., 2024; Zheng et al., 2024;
Sahoo et al., 2024; Shi et al., 2024). Notably, Lou et al.
(2023) showed that masked diffusion, as a special case of
discrete diffusion, achieves perplexity comparable to or sur-
passing ARMs at GPT-2 scale. Ou et al. (2024) established
fundamental theoretical results, which motivated our model
design, training, and inference (see Appendix A). Nie et al.
(2024) explored how MDM can be leveraged for language
tasks such as question answering at GPT-2 scale. Gong et al.
(2024) fine-tune ARMs in the MDM formulation. However,
improvements are confined to certain metrics, and it remains
unclear whether this approach can yield a foundation model
comparable to strong LLMs under a comprehensive evalua-
tion.

In comparison, this study scales MDM to an unprecedented
size of 8B parameters from scratch, achieving performance
comparable to leading LLMs such as LLaMA 3.

Additionally, a parallel line of work on image genera-
tion (Chang et al., 2022; 2023) aligns well with the appli-
cation of MDMs to text data. Moreover, MDMs have also
shown promise in domains such as protein generation (Wang
et al., 2024b;c), where they have achieved promising results.
Notably, Kou et al. (2024); Xu et al. (2025) demonstrate the
potential of using distillation to accelerate MDMs sampling,
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Table 4. Visualization of the Sampling Process and a Generated Multi-round Dialogue. In the response of LLaDA, darker colors

indicate tokens predicted in the later stages of sampling, while lighter colors correspond to earlier predictions.

Sampling Process

User Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6 kilometers per hour.
How many kilometers can she run in 8 hours?
LLaDA . . i
In P48 fhours® , Lily runs 12 * |4 = /48 kilometers After 4
hours [she runs 6 * 4 a 24 | kilometers |. In total she runs 48
+ 24 = |72 kilometers in 8 hours |. Result 72

Multi-round Dialogue Case

Could you please share with me what the initial two lines of the renowned poem ‘The
Certainly! The initial two lines of the renowned poem “The Road Not Taken” by Robert

Frost are: “Two roads diverged in a yellow wood, And sorry I could not travel both.” These
lines set the stage for the poem, introducing the idea of a speaker facing a choice between

Sure! The first two lines of “The Road Not Taken” by Robert Frost can be translated into
Sure! The first two lines of “The Road Not Taken” by Robert Frost can be translated into

German as: “Zwei Wege trennten sich im gelben Wald, und leider konnte ich nicht beide

Please also write a poem about life choices. I require 5 sentences, and the first word of

User

Road Not Taken’?
LLaDA

two paths.
User Please help me translate into Chinese.
LLaDA

Chinese as: “Pi 55 B8 5372 £ L AR, IR IEERASRE RIS
User Please translate into German.
LLaDA

tun.”
User

each sentence starts with C as the first letter.
LLaDA

Certainly! Here’s a poem about life choices, with each sentence starting with the letter “C”:
Choices cascade through life’s journey, Creating connections with each decision, Careful
consideration leads to better paths, Courageous choices shape our destiny, Choosing wisely

guides us through the years.

further enhancing their efficiency.

5. Conclusion and Discussion

In the middle of difficulty lies opportunity.
—Albert Einstein

We introduce LLaDA, a principled and previously unex-
plored approach to large language modeling based on dif-
fusion models. LLaDA demonstrates strong capabilities in
scalability, in-context learning, and instruction-following,
achieving performance comparable to strong LLMs. In addi-
tion, LLaDA offers unique advantages such as bidirectional
modeling and enhanced robustness, effectively addressing
several inherent limitations of existing LLMs. Our findings
not only establish diffusion models as a viable and promis-
ing alternative but also challenge the prevailing assumption
that these essential capabilities are inherently tied to ARMs.

While promising, the full potential of diffusion models re-

mains to be fully explored. Several limitations of this work
present significant opportunities for future research.

Due to computational constraints, direct comparisons be-
tween LLaDA and ARMs—such as training on identical
datasets—were restricted to a computational budget of less
than 10%* FLOPs. To allocate resources for training the
largest possible LLaDA model and showcasing its poten-
tial, we were unable to scale the ARM baseline to the same
extent. Moreover, no specialized attention mechanisms
or position embeddings were designed for LLaDA, nor
were any system-level architectural optimizations applied.
On the inference side, our exploration of guidance mecha-
nisms (Dhariwal & Nichol, 2021; Ho & Salimans, 2022) re-
mains preliminary, and LLaDA currently exhibits sensitivity
to inference hyperparameters. Furthermore, LLaDA has yet
to undergo alignment with reinforcement learning (Ouyang
et al., 2022; Rafailov et al., 2024), which is crucial for im-
proving its performance and alignment with human intent.
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Looking forward, the scale of LLaDA is still smaller than
leading counterparts (Achiam et al., 2023; Dubey et al.,
2024; Google, 2024; Anthropic, 2024; Yang et al., 2024;
Liu et al., 2024), highlighting the need for further scaling
to fully assess its capabilities. In addition, LLaDA’s abil-
ity to handle multi-modal data remains unexplored. The
impact of LLaDA on prompt tuning techniques (Wei et al.,
2022) and its integration into agent-based systems (Park
et al., 2023; Wang et al., 2024a) is yet to be fully under-
stood. Finally, a systematic investigation into post-training
for LLaDA could facilitate the development of O1-like sys-
tems (OpenAl, 2024; Guo et al., 2025).

Impact Statement

This work challenges the prevailing dominance of autore-
gressive modeling in LLMs by proposing a diffusion-based
alternative. Our findings open new avenues for exploring
alternative probabilistic paradigms in natural language pro-
cessing, with potential applications in conversational Al,
code generation, and complex reasoning tasks.

However, diffusion-based models, like traditional LLMs,
raise similar societal concerns. These include the environ-
mental impact of large-scale training, the potential misuse
for generating harmful or misleading content, and the ampli-
fication of biases present in training data. Addressing these
challenges is critical to ensuring the responsible develop-
ment and deployment of diffusion-based language models.
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Large Language Diffusion Models

Algorithm 1 Pre-training of LLaDA

Require: mask predictor py, data distribution pqata

1: repeat

2: X0 ~ Pdatas t ~ U(0,1] # with a probability of 1%, the sequence length of xy follows U[1, 4096]
3 X Qt|o($t\l‘0) # qy)0 is defined in Eq. (7)
4 Caleulate £ = — 71 S8 1[zi = M]log p(ah|z,) # L is the sequence length of z¢
5:  Calculate V£ and run optimizer.

6: until Converged
7: Return py

Algorithm 2 Supervised Fine-Tuning of LLaDA

Require: mask predictor py, pair data distribution pgata
1: repeat
P0s 0 ~ Ddatas t ~ U(0,1] # please refer to Appendix B.1 for details on the SFT data processing.
7t ~ qyo(T¢|T0) # qy)0 is defined in Eq. (7)

2
3
4 Calculate £ = — 1 Zlel 1[ri = M]log py(r§|po, t) # L' is the sequence length of r
5:  Calculate V£ and run optimizer.

6: until Converged

7:

Return pg

Algorithm 3 Conditional Log-likelihood Evaluation of LLaDA

Require: mask predictor pg, prompt pg, response 7, the number of Monte Carlo estimations 7,
1: log_likelihood = 0
2: for i < 1to n,,. do
3 I~{L2,...,L} # L is the sequence length of rg
4:  Obtain r; by uniformly sampling ! tokens from r without replacement for masking
5. log.likelihood = log likelihood + £ S>% | 1[ri = M] log py (1|, 1)
6
7
8

: end for
: log_likelihood = log_likelihood /7,
: Return log_likelihood

A. Formulation of Masked Diffusion Models

A.1. Training

Masked diffusion models (MDMs) (Austin et al., 2021a; Lou et al., 2023; Ou et al., 2024) define the model distribution
po(xo) in a manner distinct from autoregressive models.

These models introduce a forward process {xz:} indexed by a time ¢ € [0, 1]. This process gradually and independently
masks all tokens in the sequence x(. At time ¢ = 0, the data point x is fully observed with no masks, while for ¢ € (0, 1],
x,; represents latent variables with varying mask ratios in expectation.

Formally, the conditional distribution of x; given x is defined by a fully factorized form:

L
@rjo(we|zo) = H%m(iﬂi‘x%)v )
i=1

where the conditional distribution for each token is given by:

1—t, ai=ua,

: 8
t, zy =M. ®)

Qt|0(90§|$3) = {

Here, M denotes the mask token. Intuitively, each token either remains unchanged or is masked, with the probability of
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Algorithm 4 Reverse Process of LLaDA

Require: mask predictor pg, prompt pg, answer length L, sampling steps [V
1: Setr; is a fully masked sequence of length L.
2: for t + 1 down to -+ step - do

. 1

4:  ro = argmax,, po(To|po,rt) # we employ greedy sampling when predicting masked tokens
5: fori<+ 1to L do

6: if . # M then

7: 7‘6 = rz

8: else

9: With probability £, 7 is set to M
10: end if

11:  end for
122 rg=rm9
13: end for

14: Return 7y

being masked increasing linearly as ¢ progresses from O to 1. At¢ = 1, all tokens are guaranteed to be masked, meaning that
x1 follows a Dirac distribution concentrated on a sequence of fully masked tokens. Notably, the linear masking probability
is analogous to but distinct from, the noise schedule in continuous diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020). This linearity is motivated by the assumption that the information in the text is proportional to the
number of tokens on average, making it reasonable to lose information linearly during the forward process.

The forward process is not only reversible but also corresponds to a reverse process that is fully factorized across all
tokens (Austin et al., 2021a). The reverse process, from time ¢ = 1 to 0, generates new data from sequences of fully masked
tokens. The conditional distribution for the reverse process, for 0 < s < t < 1, is factorized as:

URHERENE qu ), ©)

where the conditional distribution for each token is:

1, rp #M, xl =},
) s t =M. 2t =M
Qo) = 02 T T (10)
QOIt( slxt)v Ty =M, zy # M,
O otherwise.

)

Thus, the key function to estimate is the conditional distribution gq|¢ (x%|x;), which predicts the original token if it is masked
in the input z;. This is analogous to the data prediction form in continuous diffusion models.

As proven in (Ou et al., 2024), an equivalent yet time-free parameterization can be derived as:
qo‘t(aﬁi|mt) = Paaa(h|zT™), Vi such that 2! = M, (11)

where 2™ denotes the collection of unmasked tokens in z;, which is identical to the corresponding tokens in the original
data x¢ since unmasked tokens are solely determined by x( and are independent of time ¢. Intuitively, this implies that
estimating the data prediction function is equivalent to estimating the conditional distributions on clean data, which is
time-invariant. Consequently, the time ¢ need not be provided as input to the parametric model.

Although the development of masked diffusion is nontrivial, the implementation is straightforward. We first introduce the
mask predictor, a parametric model py(-|z;) (e.g., a Transformer without a causal mask), which takes x; for any ¢ as input
and predict all masked tokens simultaneously. Then, we define the model distribution pg(z) as follows: starting with z; as
a sequence of fully masked tokens, we simulate an approximate reverse process parameterized by py(+|z;) from ¢ = 1 to 0.
The marginal distribution induced at ¢ = 0 then represents the model distribution pg(zo).
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Algorithm 5 Low-confidence Remasking Strategy of LLaDA

Require: mask predictor py, prompt pg, answer length L, sampling steps N
1: Set r; is a fully masked sequence of length L.
2: for t < 1 down to + step + do

. _ 1

4: fori< 1to L do

5: if 7 # M then

6: rh=ric=1

7: else

8 Ty = argmax,; pe(rg|po, 7t)

9: " = po(r§lpo, 7).
10: end if
11:  end for

12: nyn = [L(1 —s)] # the number of unmasked tokens is 7, in timestep s
13: fori < 1to L do

14: if ¢ € Lowest — ny,, ({c'}{') then

15: Ty =M # the n,,,, positions with the least confidence are selected for remasking.
16: end if

17:  end for

18: Ts =170

19: end for

20: Return rg

Formally, the mask predictor is trained using a cross-entropy loss with masking:
1< ,
L(0) & —FEt 2z, n Zl 1[z; = M]log pg(xglas) |, (12)

where 1 is sampled from the training data, ¢ is sampled uniformly from [0, 1], and x; is sampled from g;|o(z¢|zo). The
indicator function 1[-] ensures that the cross-entropy loss is computed only for masked tokens. In Ou et al. (2024), it has
been proven that the loss function £(6) is an upper bound on the negative log-likelihood of the model distribution:

_EwONPda1a(zo) [log po(0)] < L(6). (13)
In summary, this principled approach trains a generative model by progressively masking tokens during a forward process
and learning to recover the data distribution during a reverse process, all under the (approximate) maximum likelihood
estimation framework.

A.2. Inference

The cross-entropy loss in Eq. (12) has several equivalent forms (Ou et al., 2024). The first one is given by

L
L 4 )
“Eiefrz,.Lyaon |7 D Ari = M]logpp(wplr) | (14)
i=1
where [ is uniformly sampled from {1,2,..., L}, and x; is obtained by uniformly sampling ! tokens from x without

replacement for masking. Despite masking exactly [ tokens is different from masking each token independently with
probability ¢, these two masking methods lead to equivalent results in expectation (Ou et al., 2024).

While Eq. (12) and Eq. (14) share the same expectation, their variances differ. Intuitively, in Eq. (12), we expect x; to
have a fraction of ¢ tokens masked. However, the randomness of the forward process (i.e., Eq. (7)) often causes deviations,
especially when x; contains few tokens. In contrast, in Eq. (14), the fraction of masked tokens in x; is deterministically %
While a theoretical analysis depends on the data distribution, empirical results show that Eq. (12) requires over 1000 Monte
Carlo estimates for stable results, whereas Eq. (14) achieves stability with only 128 estimates. In addition, we can simply
modify Eq. (14) to its conditional version (i.e., Eq. (6)) based on Eq. (5).
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Figure 4. A Conceptual Overview of the Semi-autoregressive Sampling.

Any-order autoregressive models (AO-ARM) (Uria et al., 2014; Hoogeboom et al., 2021a; Shih et al., 2022) characterize the
joint distribution autoregressively for all possible orders 7 of the L variables. To learn such a distribution, an AO-ARM
utilizes a weight-sharing neural network to model all univariate conditionals and employs mask tokens to represent absent
variables. During training, the expected negative log-likelihood over the uniform distribution of all orders U, is minimized:

L
~Eagmev, |3 logpa(ag g =Y im)] (15)
i=1
Intuitively, :cg(<i) can be understood as a masked token x; with index in 7w(> 4) being masked. It can be further proved that

Eq. (15) is equivalent to Eq. (12). This connection explains the bidirectional reasoning capabilities of LLaDA, even though
it was never used explicitly in the inference procedure.

Nie et al. (2024) introduce unsupervised classifier-free guidance, a plug-and-play technique that balances alignment with
prompts and text diversity. Specifically, unsupervised classifier-free guidance employs the following modified mask predictor
for inference:

po(rolpo, )

, 16
po(ro|m,re)? (16)

Do (ro|po,Tt) o

where m is a mask sequence of the same length as py and w is a hyperparameter that controls the strength of pg. We employ
unsupervised classifier-free guidance in the downstream tasks, as detailed in Appendix B.5.

A.3. Algorithms

In this section, we present the training and inference algorithms. Specifically, we introduce the pre-training and supervised
fine-tuning algorithms in Algorithm 1 and Algorithm 2, respectively. In addition, the likelihood evaluation algorithm is
provided in Algorithm 3. Finally, we present the sampling algorithms in Algorithm 4 and Algorithm 5, which correspond to
the original reverse process (i.e., random remasking) and the low-confidence remasking strategy (Chang et al., 2022) of
LLaDA, respectively.

Furthermore, we apply a semi-autoregressive remasking strategy for the instruct model. Specifically, the sequence is
divided into several blocks and generated from left to right. Within each block, we apply the random remasking or the
low-confidence remasking strategy for sampling. For clarity and better visualization, we illustrate the semi-autoregressive
sampling process in Fig. 4.

Our semi-autoregressive remasking strategy is inspired by the prior work of Anonymous (2025). However, it is important to
note that Anonymous (2025) and LLaDA have entirely different training objectives and network architectures. Specifically,
the pre-training objective of Anonymous (2025) differs from Eq. (3). Moreover, their approach incorporates a causal mask
in the Transformer attention block, whereas LLaDA employs a bidirectional Transformer.
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Table 5. Model Architecture. We provide the configurations of our 1B and 7B ARM baselines, as well as the 1B and 8B LLaDA and the
8B LLaMA3 models.

Our ARM Baseline 1B LLaDA 1B Our ARM Baseline 7B LLaDA 8B LLaMA3 8B

Layers 22 22 28 32 32
Model dimension 2048 2048 4096 4096 4096
Attention heads 32 32 32 32 32
Vocabulary size 126,464 126,464 126,464 126,464 128,000
FFN dimension 5634 5634 13,440 12,288 14,336
Key/Value heads 4 4 8 32 8
Total parameters 1.49B 1.49B 6.83 B 8.02B 8.03B
Non-embedding parameters 0.97B 0.97B 5.80B 6.98 B 6.98 B

B. Experiments
B.1. Details of SFT Data

A dynamic sequence length is employed during supervised SFT, where [EOS| tokens are appended to the end of short pairs
to ensure equal sequence lengths across all data in each mini-batch. Notably, the padding |[EOS]| tokens are treated as part of
the response, i.e., masked and included in the training objective. The |[EOS]| tokens are removed from the generated outputs
during sampling. This strategy is crucial for LLaDA and ensures that the model learns to control the length of its responses
by generating [EOS|, enabling the response length to align effectively with the given prompt.

In addition, for n-turn dialogues (p3,79,p8,78,-..,po ' re ™), we treat it as n single-turn dialogue pairs, i.e.,
(09, 79), (P39, 1), - - (PSrSpard ... ph !, re~ ') and randomly sample one. This data partitioning strategy not only

equips LLaDA with multi-turn dialogue capabilities but also aligns with the padding strategy.

B.2. Architectures and Scaling Experiments
This section provides detailed information about the models we trained and the scalability experiments described in Sec. 3.1.

Firstly, for efficiency, we trained an ARM and a MDM, both with 1.5B parameters and identical architectures. Additionally,
we scaled the MDM to 8B parameters. Due to computational resource constraints, we did not train an 8B autoregressive
model with the same architecture. Instead, we utilized our previously trained 7B autoregressive model for comparison.
These four models are utilized in the scalability analysis in Sec. 3.1.

We adopted a Transformer architecture similar to LLaMA (Touvron et al., 2023; Dubey et al., 2024) for the ARMs and MDMs
we trained. Specifically, we employ RMSNorm (Zhang & Sennrich, 2019) to stabilize training, used SwiGLU (Shazeer,
2020) as the activation function to enhance non-linearity, and integrate RoPE (Su et al., 2024) for more expressive positional
encoding. Tab. 5 provides an overview of the model architectures.

Additionally, we employ the widely used 6NV D formulation (Kaplan et al., 2020; Hoffmann et al., 2022) to calculate the
training FLOPs in Fig. 3, where N represents the number of non-embedding parameters, and D denotes the total number of
training tokens.

B.3. Details and Ablation on Remasking

This section first explains the inference methods in detail, followed by ablation studies on various remasking strategies.

For instruct model, since our training includes a large number of |[EOS]| tokens, directly applying the lowest confidence
remasking strategy would result in an excessively high and unnatural occurrence of |[EOS| tokens in the generated sentences.
Therefore, we divide the entire generation length into several blocks. Each block is generated from left to right, and within
each block, we apply the reverse process to perform sampling. However, for the base model, since |[EOS| tokens are not
padded during training, using the semi-autoregressive remasking strategy makes little difference in the results.
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Table 6. Ablation on Remasking. We use GSM8K accuracy as the evaluation metric. The lowest-confidence & semi-autoregressive
remasking strategy refers to generating each block from left to right, while applying the lowest-confidence remasking strategy within each
block.

LLaDA 8B Base LLaDA 8B Instruct

Randomly remasking 52.3 72.0
Lowest confidence remasking 64.7 12.9
Lowest confidence & semi-autoregressive remasking 64.4 73.8

Table 7. Ablation on Generated Length. We use the GSMS8K accuracy as the evaluation metric and set the number of sampling steps to
half of the generated length.

Length LLaDA 8B Base LLaDA 8B Instruct

256 62.5 75.3
512 64.7 73.8
1024 65.9 75.3

For efficiency, we set the answer length to 512 and the number of sampling steps to 256 in our ablation studies. For the
semi-autoregressive remasking strategy, we set the block length to 32. To simplify the evaluation, we use GSM8K accuracy
as the performance metric. As shown in Table 6, for the base model, applying the lowest confidence remasking strategy
significantly improves performance, whereas the semi-autoregressive remasking strategy does not yield any noticeable
benefits. In contrast, for the instruct model, directly applying the lowest confidence remasking strategy leads to a substantial
performance drop. However, combining the lowest confidence remasking strategy with the semi-autoregressive remasking
strategy results in the best performance for the instruct model.

We provide the specific remasking strategies and hyperparameters used for each benchmark in Appendix B.5.

B.4. Ablation on Generated Length

In this section, we conduct ablation studies on the generated length. For simplicity, we use GSM8K as the evaluation metric.
To ensure efficiency and fairness, for each setting, we set the number of sampling steps to half of the generated length,
ensuring that in each sampling step, two tokens are transferred from the mask to the text.

For the LLaDA 8B Base model, we employ the lowest-confidence remasking strategy (i.e., Algorithm 5). For the LLaDA
8B Instruct model, we adopt semi-autoregressive sampling with a block length of 32.

As reported in Tab. 7, both the Base model and the Instruct model exhibit minimal sensitivity to the length hyperparameter.

B.5. Standard Benchmarks and Evaluation
In this section, we briefly introduce the benchmarks used in our study and describe the details of our evaluation process.
Following standard LLM (Chu et al., 2024; Yang et al., 2024) evaluation practices, we assess LLaDA across four dimensions:

General ability: MMLU (Hendrycks et al., 2020), BBH (Suzgun et al., 2022), ARC-C (Clark et al., 2018), Hel-
laswag (Zellers et al., 2019), TruthfulQA (Lin et al., 2021), WinoGrande (Sakaguchi et al., 2021) and PIQA (Bisk
et al., 2020).

Math and science ability: GSM8K (Cobbe et al., 2021), Math (Hendrycks et al., 2021) and GPQA (Rein et al., 2023).

Code generation: HumanEval (Chen et al., 2021), HumanEval-FIM (Bavarian et al., 2022) and MBPP (Austin et al.,
2021b).

Chinese understanding: CMMLU (Li et al., 2023) and C-Eval (Huang et al., 2024a).

For all the aforementioned benchmarks, we follow the widely adopted evaluation process (Gao et al., 2024) used in LLM
assessments, primarily employing conditional likelihood estimation and conditional generation. Specifically, for certain
benchmarks, a prompt and multiple candidate answers are provided, and the model is required to compute each candidate’s

19



Large Language Diffusion Models

Table 8. Inference Configuration for LLaDA 8B Instruct. We apply the low-confidence remasking strategy across all datasets. A block
length smaller than the answer length indicates the use of the semi-autoregressive remasking strategy; otherwise, it is not applied. The
shorter answer lengths for MMLU and HellaSwag result from their requirement to generate only a single token (i.e., A, B, C, or D) and
two special end tokens (i.e., end of the model response and end of the sentence).

Answer length  Block length

MMLU 3 3
Hellaswag 3 3
GPQA 128 64
GSMSK 256 8
HumanEval 512 32
MBPP 512 32
Math 256 256
MMLU-pro 256 256
ARC-C 512 512

Table 9. Comparison on iGSM Dataset.

4 steps  Ssteps 6 steps

LLaMA3 8B Base 38.0 35.0 34.0
LLaDA 8B Base 64.0 41.0 44.0

conditional likelihood. The candidate with the highest likelihood is then selected as the model’s final answer, and accuracy
is used as the evaluation metric. For the remaining benchmarks, the model generates responses based on the given prompt,
and performance is evaluated using metrics such as exact match and other relevant criteria.

For the base model, we use conditional likelihood estimation for MMLU, CMMLU, C-Eval, ARC-C, Hellaswag, TruthfulQA,
WinoGrande, PIQA, and GPQA, while the remaining benchmarks are evaluated using conditional generation. For the
instruct model, we evaluate all benchmarks using conditional generation. For datasets evaluated with conditional likelihood
estimation, we adopt the widely used Im-evaluation-harness (Gao et al., 2024) framework. However, for datasets evaluated
with conditional generation, we rely on an internal library for evaluation, as Im-evaluation-harness lacks implementations
for certain key metrics (e.g., HumanEval-FIM).

For benchmarks evaluated using conditional likelihood estimation, we use Monte Carlo estimation to approximate Eq. (6)
for conditional likelihood estimation. Since MMLU, CMMLU, and C-EVAL only require the likelihood of a single token, a
single Monte Carlo estimate is sufficient for these benchmarks. For all other benchmarks, we find that 128 Monte Carlo
samples are adequate to produce stable results. For ARC-C, Hellaswag, TruthfulQA, WinoGrande, PIQA, and GPQA, we
report the results with the optimal unsupervised classifier-free guidance scale searched in {0,0.5,1, 1.5,2}.

For benchmarks evaluated using conditional generation, we apply the lowest confidence remasking strategy to the base model,
setting both the response length and the number of sampling steps to 1024. For the instruct model, we set the sampling steps
equal to the answer length and provide the inference hyperparameters in Table 8. Due to computational resource constraints,
we do not use the unsupervised classifier-free guidance for these benchmarks evaluated using conditional generation.

B.6. Analysis of Sampling Steps

In this section, we analyze the impact of sampling steps. For simplicity, we use the LLaDA 8B Base model and evaluate it
on the GSM8K and HumanEval datasets. Additionally, we fix the answer length at 1024. As shown in Fig. 5, as the number
of sampling steps increases to match the answer length, the model’s accuracy improves accordingly.

B.7. Evaluation on iGSM Dataset

To further assess the mathematical capabilities of LLaDA, we test its performance on iGSM (Ye et al., 2024), an infinite,
synthetic GSM8K-like dataset. iGSM is generated via specific rules, with parameters that control the difficulty of problems
(i.e., the number of solution steps). For evaluation consistency, we append “#### $answer” to the final solution, adhering to
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Figure 5. Analysis of Sampling Steps.

the GSM8K format. Below is an example with solution steps set to 4:

(Question) The number of each North Star Elementary’s Cultural Studies Classroom equals 1. The number of each
Westridge Elementary’s Dance Studio equals 3 times as much as the sum of each North Star Elementary’s Classroom
and each North Star Elementary’s Cultural Studies Classroom. How many Dance Studio does Westridge Elementary
have?

(Solution) Define North Star Elementary’s Cultural Studies Classroom as x; so x = 1.

Define North Star Elementary’s Classroom as m; som =x = 1.

Define Westridge Elementary’s Dance Studioasn;w=m+x=1+1=2;

son=3*w=3%2=1#H#1

Since there are slight differences between GSM8K and iGSM (e.g., the use of a mod 5 algorithmic system), we follow (Ye
et al., 2024) and provide a system prompt along with four-shot question-answer pairs for each problem.

(Prompt) You’re an expert at solving elementary math problems involving addition, subtraction, and multiplication.
You solve all the problems in a uniform format. All calculations are done modulo 5. For example, 4 + 4 equals 3,2 + 4
equals 1, 3 + 3 + 3 equals 4, 3 * 3 equals 4, and 2 * 2 equals 4. When providing your solution, please end with *#### x.’
where x is your final answer, an integer between 0 and 4. You must solve all the problems using the same solution
format. Our scenarios involve up to four categories of objects: schools, classrooms, backpacks and stationeries. Each
school may contain classrooms, each classroom may contain backpacks, and each backpack may contain stationeries.
We can specify quantities, such as the number of dance studios at each Lakeshore High.Assume that every entity
with the same name has an identical configuration; for example, each Lakeshore High contains the same number of
dance studios. Another guiding principle is that what is not mentioned does not exist: when we refer to classrooms at
Lakeshore High, we are only discussing the classrooms explicitly mentioned in our scenario. Furthermore, if Lakeshore
High is not even mentioned, any classroom within it is automatically considered to be non-existent (i.e. 0).

For solution steps ranging from 4 to 6, we generate 100 questions for each case and report the corresponding accuracy in
Table 9. As shown in the table, LLaDA Base demonstrates significant and consistent advantages over LLaMA3 on unseen
mathematical problems, aligning with the results in Table 1.

B.8. Poem Completion Tasks

In this section, we present examples from our poem completion dataset as follows.

Example 1:
Prompt: %5 JEMZ KT — A1 47 B3 A7 RIAT .
Answer: T3
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Table 10. Visualization of the Semi-Autoregressive Sampling Process. In the response of LLaDA, darker colors indicate tokens
predicted in the later stages of sampling, while lighter colors correspond to earlier predictions.

User What are the benefits of regular exercise for physical and mental health?
LLaDA

Regular exercise can improve physical health by strengthening muscles and bones |,

improving cardiovascular health , and reducing the risk of chronic diseases such ' as

diabetes and heart disease . It

Table 11. Visualization of the Multi-turn Dialogue. We employ random remasking strategy. In the response of LLaDA, darker colors
indicate tokens predicted in the later stages of sampling, while lighter colors correspond to earlier predictions.

User I want to have a pet, but I don’t know whether to get a cat or a dog. Do you have any

suggestions?

It | really . preferences , lifestyle ’ type .
IEEEEES - - - - . ulas
. Qg prefer a companion and ' more  active festyle

might  be better  fit . dered .

User I’'m very busy at work, so it seems like a cat would be a more suitable option. Do you have

any suggestions for getting a cat?
space . - - provide food

LLaDA

LLaDA
- I First , make sure you
. ' and . your Also , research
- - l ﬂ & - l

Example 2:
Prompt: N —#&FE AA B E—AIEM 4 B AR .
Answer: FXR A TR -

B.9. More Case Studies

In this section, we present additional case studies of LLaDA 8B Instruct. First, Tab. 10 illustrates the sampling process of
semi-autoregressive remasking, while Tab. 11 depicts the sampling process for multi-turn dialogues with random remasking.
Additionally, Tab. 12 and Tab. 13 provide further examples of single-turn and multi-turn dialogues. Finally, Tab. 14 presents
examples of poem reversal completions where the LLaDA 8B Instruct model succeeds, in contrast to the failure of GPT-4o.
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Table 12. Single-turn Dialogue Cases of LLaDA 8B Instruct.

Daily life
User
LLaDA

What’s a piece of advice you’ve received that you’ve found helpful?

One helpful piece of advice I’ve received is to always be open to learning and growth.
I’ve found that being willing to explore new ideas and experiences has helped me become
more resilient and adaptable. By embracing a growth mindset, I’ve been able to identify
opportunities for improvement and development, both personally and professionally.

Daily life
User
LLaDA

Please recommend me three famous movies

Certainly! Here are three famous movies that have achieved widespread popularity and
critical acclaim:

1. **The Shawshank Redemption** (1994) - Inspired by a novella and directed by Frank
Darabont, this film tells the story of Andy Dufresne, a man convicted of murdering his
wife, dealing with his harsh life in Shawshank Prison and forming an unlikely friendship
with a fellow inmate.

2. **The Godfather** (1972) - Directed by Francis Ford Coppola, this film is based
on Mario Puzo’s novel of the same name. It follows the story of the Corleone family,
particularly Michael Corleone, who rises to power and takes over the family’s criminal
empire.

3. **The Empire Strikes Back** (1980) - Directed by George Lucas, this film continues
the story of a young Skywalker in the Star Wars saga. It follows Luke Skywalker as
he helps the Rebel Alliance fight against the Galactic Empire and destroy the powerful
weapon, the Death Star.

All of these films are celebrated for their cinematic achievements, powerful storytelling,
and memorable characters.

Translation
User
LLaDA

Please help me translate into Chinese: ‘What is now proved was once only imagined’

UAERROUE I (8 22 FURAE R

Translation
User
LLaDA

Please help me translate into German: ‘What is now proved was once only imagined’
Wer heute bestitigt ist, war einst nur immaginiert.

Math
User

LLaDA

Emma decides to run 4 sprints 5 times a week. She runs 75 meters each sprint. How many
total meters does she run a week?

Emma runs 4 sprints each time, so she runs a total of 4 x 5 =20 sprints a week. Each sprint
is 75 meters long, so Emma runs a total of 20 x 75 = 1500 meters a week. The final result
is 1500

Code
User
LLaDA

I am writing python code, I have an array, please help me sort it from largest to smallest
Certainly! You can sort an array from the largest to smallest in Python using the ‘sort()’
method or the ‘sorted()‘ function. Here’s an example:

### Using ‘sort()’ method:

my_array = [3, 1,4, 1, 5, 2]

my_array.sort(reverse=True)

print(my_array)
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Table 13. Multi-turn Dialogue Cases of LLaDA 8B Instruct.

Daily life
User How do I prepare for a job interview?
LLaDA To prepare for a job interview, you should research the company and the job, practice
common interview questions, and dress appropriately.
User What are some common interview questions?
LLaDA Some common interview questions include “Tell me about yourself”” and “Why do you
want to work for us”?
Daily life
User How do I start learning programming?
LLaDA To learn programming, you can start by choosing a programming language that you are
interested in. Some popular languages include Python, Java, and C++.
User Which programming language should I learn first?
LLaDA It depends on your interests and goals. Python is a great language for beginners for its
simplicity and versatility.
User How long does it take to learn Python?
LLaDA It can take anywhere from a few weeks to several months to learn Python.
User What are some good Python projects for beginners?
LLaDA Some good Python projects for beginners include building a simple calculator, a game, and
a web application.
Math
User Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April and May?
LLaDA Natalia sold clips to 48 friends in April. She sold half as many clips in May, so she sold
48/2 = 24 clips in May. Altogether, Natalia sold 48 + 24 =72 clips in April and May. The
final result is 72.
User Natalia sold three times as many items in June as she did in May. How many clips did
Natalia sell altogether in these three months?
LLaDA Natalia sold clips to 48 friends in April. She sold half as many clips in May, so she sold

48/2 = 24 clips in May. Natalia sold three times as many items in June as she did in May,
so she sold 24 * 3 = 72 clips in June. Altogether, Natalia sold 48 + 24 + 72 = 144 clips in
these three months. The final result is 144.

Table 14. Poem Reversal Completion Cases where LLaDA 8B Instruct Succeeds but GPT-40 Fails.

Questionl
User B E NGB B E—A) A2
GPT-4o “{H[E AGEM" ) _E—A) &< TC Al SR A Y% 253X 1 A) th B B IR AZRIE IR (R
&, B TAIRAAEE S, (HEAE . X EIFRFRE TEEEFERN T RIS
Bl EACEANER S, i AR ORTE RS K% -
LLaDA  “{H[E AiEm i) E—a) & <= IR
Question2
User WERE L B E—R 242
GPT-4o “WHFA L Z"M E—A &= WHWE"XWa B ERTFAELER (WLFEK
fE) mWLFWE, REEAELE .. XEFRHETERUFWNENRESE R,
FIH BRI TERS FAIESE -
LLaDA “f#fA L2 1 E—a)d AIREETER
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