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While density functional theory (DFT) serves as a prevalent computational approach in electronic structure

calculations, its computational demands and scalability limitations persist. Recently, leveraging neural networks

to parameterize the Kohn–Sham DFT Hamiltonian has emerged as a promising avenue for accelerating electronic

structure computations. Despite advancements, challenges such as the necessity for computing extensive DFT

training data to explore each new system and the complexity of establishing accurate machine learning models

for multi-elemental materials still exist. Addressing these hurdles, this study introduces a universal electronic

Hamiltonian model trained on Hamiltonian matrices obtained from first-principles DFT calculations of nearly

all crystal structures on the Materials Project. We demonstrate its generality in predicting electronic structures

across the whole periodic table, including complex multi-elemental systems, solid-state electrolytes, Moiré twisted

bilayer heterostructure, and metal-organic frameworks. Moreover, we utilize the universal model to conduct high-

throughput calculations of electronic structures for crystals in GNoME datasets, identifying 3940 crystals with

direct band gaps and 5109 crystals with flat bands. By offering a reliable efficient framework for computing

electronic properties, this universal Hamiltonian model lays the groundwork for advancements in diverse fields,

such as easily providing a huge data set of electronic structures and also making the materials design across the

whole periodic table possible.

DOI: 10.1088/0256-307X/41/7/077103

Electronic structures [1–5] of materials are crucial in un-

derstanding and predicting a wide range of physical prop-

erties, including electrical conductivity, optical behavior,

mechanical strength, chemical reactivity, and magnetic

characteristics. Electronic structure calculations provide

insights into the electronic band structures, bonding, and

reactivity, enabling designs of new materials and research

of chemical reactions. Among diverse quantum mechan-

ics approaches, density functional theory (DFT) [6–9] has

become a widely used computational method in electronic

structure calculations since DFT has drastically reduced

the computational cost by employing the electron density

instead of the many-body wave function as the fundamen-

tal variable. The price to pay for using the electron den-

sity as the fundamental variable is that the Kohn–Sham

DFT Hamiltonian is no longer a simple explicit function

of the atomic structure, but should be obtained by solving

a self-consistent Kohn–Sham equation. However, the com-

putational cost of DFT self-consistent field (SCF) cycles

remains expensive for large systems.

In recent years, the use of neural networks to pa-

rameterize the DFT Hamiltonian has emerged as an

important and effective method to accelerate electronic

structure calculations. [10–22] The machine learning (ML)

Hamiltonian models offer a significant advantage by

providing a direct mapping from the structure to the

self-consistent Hamiltonian matrix, eliminating the need

for time-consuming self-consistent iterations typically re-

quired in Kohn–Sham DFT. Initially, Hegde and Bowen

proposed a kernel ridge regression (KRR) model and suc-

cessfully applied it to fit the empirical Hamiltonian ma-

trix of the cubic Cu crystal. [10] Subsequently, Unke [14]

proposed the PhiSNet model, and Schütt et al. [12] intro-

duced the SchNOrb model, both of which demonstrated

remarkable performance in accurately fitting the Hamil-

tonian matrices of various small organic molecules such

as water, ethanol, and uracil. In addition, some other

researchers have also made important contributions. For

instance, Nigam et al. [18] used the Gaussian process re-

gression (GPR) model to fit the Hamiltonian matrices of

water and benzene molecules, while Zhang et al. [20] suc-

cessfully fitted the Hamiltonian matrix of aluminum using

the atomic cluster expansion (ACE) model. The authors

of Refs. [17,21] proposed the graph neural network (GNN)-

based DeepH model, which can be used to predict the

Hamiltonian matrices of crystals like graphene and MoS2.

Despite these advancements, there still exist several

challenges in utilizing machine learning for electronic

Hamiltonian prediction. Firstly, exploring new systems

necessitates retraining a completely new model specifically
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tailored for that system, which currently lacks automation

and can prove time-consuming and computationally ex-

pensive, thereby constraining the practical applicability of

this approach. Secondly, many practical materials, such

as high-entropy alloys [23–25] and ceramics, [26,27] are com-

posed of a large number of elements, posing challenges

in establishing accurate machine-learning models for their

electronic Hamiltonians due to the requirement of a sub-

stantial amount of DFT training data. Current research

endeavors have predominantly concentrated on systems

comprising no more than three elements, and surmount-

ing this obstacle to encompass more intricate systems re-

mains a significant challenge in the field. Overcoming these

challenges is crucial to enable the broader application of

machine learning in predicting electronic Hamiltonians for

diverse and multi-elemental materials. Recently, several

groups reported developments of universal machine learn-

ing interatomic potentials (MLIPs), [28–33] which can han-

dle almost all elements across the whole periodic table.

Naturally, one may wonder whether it is possible to de-

velop a universal machine-learning model for electronic

Hamiltonians. Such a model would enable efficient and ac-

curate calculations of electronic structures for a wide range

of materials and large-scale systems. Recently, we have

proposed a transferable Hamiltonian graph neural network

(HamGNN) [22] that enables the prediction of Hamiltonian

matrices for various structures within a chemical space

comprising several specific elements, such as SiO2 isomers

and Bi𝑥Se𝑦 compounds with varying stoichiometric ratios.

Compared to the above-mentioned models, the excellent

transferability of the equivariant GNN-based HamGNN

framework makes it the most feasible candidate for con-

structing a universal Hamiltonian model across the en-

tire periodic table. Unlike the construction of universal

MLIPs, achieving a universal Hamiltonian model is not as

straightforward and cannot simply rely on training with

large-scale datasets due to the high dimensionality and in-

herent complexity of the Hamiltonian matrix. The training

process also plays a crucial role in achieving the universal-

ity of the Hamiltonian model.

In this work, we propose a universal Kohn–Sham

Hamiltonian model in the sense that this single model

is applicable to all elements of the entire periodic table

and all structures of a given chemical composition. By

employing the HamGNN model, we develop a universal

Hamiltonian model via a “two-step training procedure”

utilizing the Hamiltonian matrices of 55000 structures ob-

tained from the Materials Project [34,35] as our training

dataset. The universality of our Hamiltonian model is

demonstrated by its successful prediction of the electronic

structures for various bulk or low-dimensional materials

with different combinations of chemical elements in the

periodic table. The universal model successfully captures

not only common systems but also those containing un-

common or rare transition metal elements. Furthermore,

it proves high accuracy even in complex multi-element sys-

tems comprising more than five elements. By providing

a reliable framework for understanding electronic proper-

ties across the periodic table, this research paves the way

for advancements in material design, catalysis, electronics,

and other fields that heavily rely on efficient predictions of

electronic structures.

Framework of the Universal Electronic Hamiltonian

Model. Constructing an ML model for the elec-

tronic Hamiltonian is more complicated than constructing

machine learning interatomic potentials (MLIPs). [36–41]

MLIPs provide a mapping from the two degrees of free-

dom, atomic types {𝑍𝑖} and atomic positions {𝜏𝑖}, to

the scalar potential energy 𝐸. In addition to the two de-

grees of freedom, the mapping from a crystal structure to

the electronic Hamiltonian matrix also necessitates han-

dling the supplementary degree of freedom arising from

distinct atomic orbital bases {𝜑𝑖𝛼} associated with each

atom. As the number of elements in the system increases,

the relevant degrees of freedom and interactions in the

electronic Hamiltonian matrix also increase dramatically,

leading to a significant increase in complexity when fitting

the electronic Hamiltonian matrix. Therefore, a univer-

sal electronic Hamiltonian model across the periodic ta-

ble requires much more network capacity than the MLIPs

to capture all degrees of freedom accurately. For large

molecules or crystals, especially in the cases where the ba-

sis set is large and the system is complex, the dimension of

the electronic Hamiltonian matrix can be extremely large.

This increases the difficulty of model training, as it re-

quires handling large-scale matrix and storing a significant

amount of parameters. In addition, different sub-blocks of

a Hamiltonian matrix are subject to different equivariant

constraints under a rotation operation, so the Hamiltonian

matrix predicted by the model must also adhere to these

constraints.

We have trained a universal Hamiltonian model fol-

lowing the process shown in Fig. 1. To develop a uni-

versal Hamiltonian model for the whole periodic table,

we utilized one of the world’s largest open databases

for DFT-relaxed crystal structures, namely the Materials

Project. [34,35] We used OpenMX, [42,43] a DFT software

package based on norm-conserving pseudopotentials and

pseudo-atomic localized basis functions, to calculate the

Hamiltonian matrices of approximately 55000 structures

on the Materials Project. Among them, approximately

44000 structures’ Hamiltonian matrices were used as a

training set, while validation and test sets were created

using the Hamiltonian matrices of around 5500 structures

each. Then, we use these datasets to train a universal

HamGNN [22] model. HamGNN is a deep learning model

based on equivariant graph neural networks, which can au-

tomatically learn the features of each element on the en-

tire periodic table without any prior physical or chemical

properties of elements. The architecture of the HamGNN

model and the training process are shown in Fig. 1(b). We

will briefly introduce the principle of HamGNN for pre-

dicting the Hamiltonian matrix in the following paragraph,

and for more network details see Ref. [22].

Since the irreducible representations with rotation or-

ders 𝑙 = 0, 1, 2, . . . of the 𝑂(3) group possess the same ro-

tational equivariance and parity symmetry as the atomic

orbitals 𝑠, 𝑝, 𝑑, . . ., HamGNN uses a direct sum of equiv-
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ariant atomic features 𝑉𝑙 with different rotation orders 𝑙

to characterize each atom: 𝑉 = 𝑉0 ⊕ 𝑉1 ⊕ · · · ⊕ 𝑉𝑙max .

This feature tensor satisfies the rotational equivariance

under the rotation operation �̂�: 𝑉𝑙(�̂� · (𝑟1, . . . , 𝑟𝑁 )) =

𝐷𝑙(�̂�)𝑉𝑙(𝑟1, . . . , 𝑟𝑁 ), where 𝐷𝑙 (𝑙 < 𝑙max) is a Wigner 𝐷

matrix [44,45] of order 𝑙. HamGNN updates the equivariant

atomic features through an equivariant message-passing

function in the orbital convolution layer. After 𝑇 orbital

convolution layers, the atomic features are transformed

into on-site Hamiltonian matrices by an “on-site layer”.

HamGNN merges the features of atom pairs 𝑖𝑗 into the

edge features 𝑃𝑖𝑗 in the “pair interaction layer”. The edge

features 𝑃𝑖𝑗 is later transformed into an off-site Hamilto-

nian matrix through an “off-site layer”. Each subblock of

the Hamiltonian matrix can be decomposed into a set of

𝑂(3) equivariant irreducible spherical tensors (ISTs) ac-

cording to the equation [44–47]

𝑙𝑖 ⊗ 𝑙𝑗 = |𝑙𝑖 − 𝑙𝑗 | ⊕ |𝑙𝑖 − 𝑙𝑗 |+ 1⊕ · · · ⊕ 𝑙𝑖 + 𝑙𝑗 . (1)

(a)

(b)

(c)

The materials
project

Dataset

Application

Model
&

training

Zi Zj

Vi

rij

Embedding layer

(0)

Vi
(T) Vi

(T) Vj

Pij

Hii Hij

Hii Hij

(T)

Vj
(0) B(|rij|) Y(rij)

̭

Orbital convolution

Orbital convolution

Orbital convolution

On-site
blocks

Pair
interaction

Off-site
blocks

HamGNN architecture Two training rounds

Bulk Surface 2D 1D Cluster
x

y

Enk{k}

{tj}

{tj}

Conduction band

Fermi level

Valence bandFourier

U
S
XZWK

L

QD
L

G
Skx

Round 1 Round 2

j

i

Rc
Orbital features

HamGNN

Update

Message
passing

Fig. 1. Framework of a universal Hamiltonian model based on HamGNN. (a) Training dataset preparation. The

training dataset is generated by calculating the real-space Hamiltonian matrices of crystal structures available on

the Materials Project using an ab initio tight-binding software based on numerical atomic orbitals. (b) Model

architecture and the training procedure. This dataset is utilized for training the HamGNN model, a deep learning

approach that employs equivariant graph neural networks to predict the Hamiltonian matrix. The model can

automatically learn the intrinsic features of each element on the periodic table solely based on their atomic numbers,

without relying on any prior physical or chemical properties. In HamGNN, the orbital features of the central atom

are updated by considering interactions between the neighboring atoms within a cutoff radius of 𝑅c. For atomic

pairs beyond this cutoff radius, multi-layer message passing is employed to exchange orbital features. To achieve

universality, HamGNN requires two rounds of training. In the first round, the loss function for network training

solely considers the error in the real-space Hamiltonian matrix. After this initial round of training, this model can

accurately predict the real-space Hamiltonian matrices with high precision. In the second round of training, the

real-space Hamiltonian matrices are transformed into the reciprocal Hamiltonian matrices at randomly selected 𝑘

points in the Brillouin zone, and the errors of the orbital energies near the Fermi level obtained by diagonalizing

the reciprocal Hamiltonian matrices are incorporated into the total loss function. (c) Applications of the universal

HamGNN model. After two rounds of training, the universality of the HamGNN model has significantly improved,

enabling accurate prediction of electronic structures in crystals with arbitrary periodic boundary conditions and any

components.
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The on-site and off-site layers output each sub-block

of the Hamiltonian matrix by the following equation:

𝐻𝑙𝑖𝑚𝑖,𝑙𝑗𝑚𝑗 =

𝑙𝑖+𝑙𝑗∑︁
𝑙=|𝑙𝑖−𝑙𝑗 |

𝑙∑︁
𝑚=−𝑙

𝐶
𝑙𝑖,𝑙𝑗 ,𝑙
𝑚𝑖,𝑚𝑗 ,𝑚𝑇 𝑙

𝑚, (2)

where 𝑇 𝑙
𝑚 is an equivariant IST with rotation order 𝑙 in

𝑉
(T)
𝑖 or 𝑃𝑖𝑗 , 𝐶

𝑙𝑖, 𝑙𝑗 , 𝑙
𝑚𝑖,𝑚𝑗 ,𝑚 is the Clebsch–Gordan coefficient.

To achieve a universal model, HamGNN needs to un-

dergo two rounds of training. During the first round of

training, only the error of the real-space Hamiltonian ma-

trix is considered as the loss function for the network’s

training. After the first round of training, the model is

capable of reasonably predicting the real-space Hamilto-

nian matrix, which lays a good foundation for obtaining

accurate band structures in subsequent tasks. To improve

the accuracy of the model in predicting the eigenvalues

of Bloch states, which constitutes the primary objective

of our Hamiltonian model, we further applied fine-tuning

techniques for a second round of training. Fine tuning in

neural networks has shown a crucial role in training re-

cently developed large language models to optimize their

adaptation to specific tasks or domains. [48,49] The results

of our tests indicate that the two training rounds are neces-

sary to obtain a truly universal Hamiltonian model. Dur-

ing each training step in the second round, Fourier trans-

formations are performed on the predicted and target real-

space Hamiltonian matrices at randomly selected 𝑘 points

in the Brillouin zone. The orbital energies 𝜀𝑛𝑘 are obtained

by diagonalizing the reciprocal Hamiltonian matrices, and

the error of the orbital energies near the Fermi level is

incorporated into the loss function as follows:

𝐿 = ‖�̃� −𝐻‖+ 𝜆

𝑁orb ×𝑁𝑘

𝑁𝑘∑︁
𝑘=1

𝑁orb∑︁
𝑛=1

‖𝜀𝑛𝑘 − 𝜀𝑛𝑘‖, (3)

where the variables marked with a tilde refer to the corre-

sponding predictions and 𝜆 denotes the loss weight of the

orbital energy error. 𝑁orb is the number of orbits selected

near the Fermi level, 𝑁𝑘 is the number of the random 𝑘

points generated in each training step.
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Fig. 2. (a) Element distribution of the training dataset. (b) Comparison of the Hamiltonian calculated by HamGNN

and OpenMX for the test dataset.

Figure 2(a) displays the count of each chemical element

in the training set for the Hamiltonian. The metallic ele-

ments of groups IA and IIA, as well as the non-metallic el-

ements of groups IVA, VA, VIA, and VIIA, have the highest

proportion in the training set. Except for some less com-

mon transition metal elements that are not included in the

training set, this dataset includes all elements supported

by OpenMX’s PBE pseudopotential library. After the first

round of training, the HamGNN model achieved a mean

absolute error (MAE) of only 5.4meV for the real-space

Hamiltonian matrix on the test set. The accuracy of the

model for the real-space Hamiltonian matrix is shown in

Fig. 2(b). In the second round of training, we incorporate

the error of orbital energies at five randomly selected 𝑘-

points in the Brillouin zone into the loss function to restart

the training, with a 𝜆 value set at 0.01. After the second

round of model fine-tuning, the generalization ability of

the HamGNN model has been significantly improved. The

model’s high accuracy on the test set is evident from its

predictions of energy bands and Fermi surfaces for several

crystal structures in the test set (see Discussion 1 in the

Supplementary Material). By addressing potential over-

fitting issues, this model demonstrates better adaptability

to different datasets and real-world scenarios, showcasing

enhanced universality and stability. In the following dis-

cussions, we will evaluate HamGNN’s prediction accuracy

for more complex crystals across the entire periodic table.

Tests on Multi-Element Materials. We are now apply-

ing our universal Hamiltonian model to systems that are

not included in the Materials Project to verify the general-

ity and accuracy of our model. Previous ML Hamiltonian

models [10,15,20] typically handle crystal structures com-

posed of only 1–3 elements, and training an accurate model

that can deal with complex crystal structures containing

more elements is challenging. The training datasets com-

monly used by these models are built from structures per-

turbed using molecular dynamics. However, as the number

of atomic species in the crystal increases, the degrees of

freedom of the Hamiltonian matrix increase sharply. Con-

sequently, the training samples generated by perturbing a

seed structure cannot fully cover the entire configuration

space of the crystal. In these cases, the perturbed struc-

tures often contain many similar and repetitive patterns,

which can cause the Hamiltonian model to be trapped in
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local minima and fail to accurately fit the Hamiltonian

of crystals with multiple elements and complex configura-

tions. However, the universal Hamiltonian model can ef-

fectively address such concerns. Through extensive train-

ing on a comprehensive and diverse dataset, the universal

Hamiltonian model develops a profound understanding of

the intricate interactions among atoms in various configu-

rations.
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The universal HamGNN’s generalization performance

and accuracy were evaluated by conducting tests on

three different crystal structures: Hf2Zr9Ta6Ti5Nb5B54,

HfTaTiB4MoC4, and K3Ba3Li2Al4B6O20F. These crys-

tals were specifically chosen to represent a diverse range

of compositions and structural complexities. [50–52] The

compound Hf2Zr9Ta6Ti5Nb5B54 exhibits a hexagonal 𝜔-

phase derived structure and belongs to the 𝑃1 space

group of the triclinic crystal system. It consists of five

distinct metal ions, which are inserted randomly into

the gaps between the hexagonal monolayers of boron.

HfTaTiB4MoC4 crystallizes in the triclinic 𝑃1 space group,

with the metal elements inserted into the gaps between

the hexagonal monolayers composed of boron and carbon.

K3Ba3Li2Al4B6O20F is a deep ultraviolet transparent non-

linear optical crystal, composed of seven elements and pos-

sessing a large bandgap. [53]

To assess the generalization performance of HamGNN,
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a comparison was made between the predicted energy

bands generated by the model and the calculated en-

ergy bands by OpenMX for each of these crystals, as

shown in Fig. 3. By examining Fig. 3, it becomes evident

that HamGNN demonstrates remarkable generalizability

in predicting the energy bands for the three crystal struc-

tures. The charge densities of these three crystals were

also obtained using the predicted Hamiltonian matrix, as

shown in Fig. 4. The predicted charge densities exhibit ex-

cellent agreement with the corresponding DFT-calculated

charge densities (shown in Fig. S6 of the Supplementary

Material). This further confirms that HamGNN is ca-

pable of accurately capturing not only energy bands but

also charge distribution within these materials. Further-

more, to test its versatility and applicability on practi-

cal materials, we extended our analysis to a sulfide solid

electrolyte with a composition of Li10Si1.5P1.5S11.5Cl0.5, a

highly disordered system consisting of 7200 atoms. Our

universal model shows that this disordered system is insu-

lating with a band gap of 1.4 eV, suggesting that it indeed

has excellent electric insulating properties and may serve

as a promising solid electrolyte (see Supplementary Discus-

sion 2 for details). These successful evaluations highlight

the effectiveness and reliability of HamGNN as a univer-

sal model for predicting electronic structures across vari-

ous complex crystal systems. Its ability to generalize well

across different compositions and structural complexities

makes it an invaluable tool in high-throughput electronic

structure calculations for the periodic table.
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Fig. 5. Prediction results of the universal HamGNN model for the bilayer MoS2/WS2 heterostructure with a

twist angle of 3.5∘ and the C60 cluster. (a) Side view of the bilayer MoS2/WS2 heterostructure. (b) Top view of

the bilayer MoS2/WS2 heterostructure. (c) Predicted band structure of the bilayer MoS2/WS2 heterostructure.

(d) Band structure of the bilayer MoS2/WS2 heterostructure calculated by OpenMX. (e) The HamGNN-predicted

and OpenMX-calculated orbital energies for the C60 cluster. (f) The HamGNN-predicted and OpenMX-calculated

wavefunction for the highest occupied molecular orbital (HOMO) of the C60 cluster.

Tests on Low-Dimensional Materials. The above dis-

cussions have demonstrated the accuracy of the universal

HamGNN model on bulk materials. Now, we further ex-

plore its generalizability and prediction accuracy in the

field of low-dimensional materials. We constructed a two-

dimensional heterostructure consisting of MoS2/WS2 with

a twist angle of 3.5∘, as shown in Figs. 5(a) and 5(b). This

structure comprises 1625 atoms and exhibits a higher level

of complexity compared to the bulk structures typically in-

cluded in our training set. The universal HamGNN model

effectively captures the interatomic interactions within the

bilayer MoS2/WS2 heterostructure and demonstrates ex-

cellent agreement between the energy bands predicted by

the universal HamGNN model [Fig. 5(c)] and those cal-

culated by OpenMX [Fig. 5(d)]. The universal HamGNN

model was further tested on the C60 cluster. Figure 5(e)

demonstrates a good alignment between the predicted en-

ergy level of the C60 cluster near the band gap and the

results obtained through DFT calculations, while Fig. 5(f)

illustrates a close match between the predicted wave func-

tion and the wave function calculated by DFT. These tests

demonstrate the powerful and wide applicability of the uni-

versal HamGNN model in various material systems, rang-

ing from bulk crystals to low-dimensional materials. By

utilizing this universal model, researchers can explore a

vast array of low-dimensional materials with tailored func-

tionalities and properties.

Application of the Universal Hamiltonian Model to

Large-Scale Hybrid Inorganic-Organic Crystals. Now,

we utilize the universal Hamiltonian model to predict

the electronic structures of metal-organic frameworks

(MOFs) [54–56] and demonstrate its efficiency and broad

applicability in studying hybrid inorganic-organic crys-

tals. MOFs [54–56] are a type of porous material com-

posed of metal ions and organic ligands, forming intri-

cate three-dimensional network structures. The electronic

structures [57,58] of MOF materials, such as band structure,

electron density of states, and electron orbital distribution,
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directly influence the conductivity, optical properties, and

potential applications in fields like photocatalysis and pho-

tovoltaics. However, due to the complex structure and

large size of MOFs, accurately predicting their electronic

structures using DFT can be challenging and computa-

tionally expensive.

By training on inorganic crystal structures available

on the Materials Project, we have successfully developed a

universal Hamiltonian neural network model that demon-

strates high accuracy across various types of inorganic ma-

terials. However, this model lacks training on organic

crystal structures which encompass a significant number

of covalent bonds. Consequently, when predicting some

complex organic or hybrid inorganic-organic crystal struc-

tures, the model may encounter certain challenges. In or-

der to further improve the accuracy of the model in pre-

dicting the Hamiltonian matrix of organic crystal struc-

tures, we employed incremental training to further train

and fine-tune the model. We selected approximately only

1800 small MOF crystal structures from the QMOF [59]

database, with a maximum number of atoms per unit

cell not exceeding 50, as the training set. Subsequently,

we further restart the training of the previous universal

HamGNN model using this dataset. The mean absolute

error of the Hamiltonian matrix predicted by the further

trained model on this MOF dataset is about 3.95meV.

The comparison between the Hamiltonian matrix elements

predicted by HamGNN and those calculated by OpenMX

on the small MOF dataset is shown in Supplementary

Fig. S8. After undergoing fine-tuning, the Hamiltonian

model demonstrates enhanced precision in inferring the

interactions among diverse covalent bonds within organic

crystalline materials.
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Fig. 6. (a) Crystal structure, (b) predicted energy bands, and (c) calculated energy bands of AlH9C14O5. (d)

Crystal structure, (e) predicted energy bands, and (f) calculated energy bands of ZnSiH40C52N4(Cl8F3)2.

As a test, we used the model to predict the elec-

tronic structures of two MOF materials, AlH9C14O5 and

ZnSiH40C52N4(Cl8F3)2, and compared them with the re-

sults obtained from DFT calculations. Both crystal struc-

tures have complex topological configurations, and the lat-

ter even contains up to seven elements, posing great chal-

lenges to the model. Despite these complexities, the en-

ergy bands predicted by the model for both structures

are in good agreement with those obtained from DFT

calculations, as shown in Fig. 6. This indicates that our

developed model has high accuracy and reliability when

dealing with complex organic crystal structures. Further-

more, the difference charge densities predicted for these

two materials achieved excellent consistency with those ob-

tained from DFT calculations, as shown in Supplementary

Fig. S9. Moreover, the speed of DFT calculation can be im-

proved by several orders of magnitude via using machine

learning methods. Taking ZnSiH40C52N4(Cl8F3)2 as an

example, the time cost of using DFT methods is as high

as 181 core·h. However, the HamGNN model only takes

0.33 core·h to complete the computational task.

With further research, some more complex and larger

MOF materials show wide application prospects in cata-

lyst design, photovoltaics, solar cells, light-emitting diodes

(LEDs), etc. [60] In this case, the advantage of using ma-

chine learning Hamiltonian models for computing large

MOF materials becomes apparent. To demonstrate the

applicability of our model, we conducted electronic struc-

ture calculations on a specific MOF crystal known as

Zn4H28C58O13 (labeled as c6ce00407e c6ce00407e6 clean)

from the CoRE MOF database. [61,62] This particular crys-

tal is one of the largest MOFs in the CoRE MOF database

and possesses a large unit cell containing 5562 atoms. Us-

ing the universal HamGNN model, we obtain the energy

bands and density of states for Zn4H28C58O13, as shown in

Fig. 7. It can be seen from the energy bands that the struc-

ture has a bandgap value of about 2.6 eV, which makes it

a suitable candidate for various applications in the field
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of energy harvesting and emission, such as photovoltaics

and light-emitting diodes. Furthermore, we also predicted

the difference charge density of this structure and observed

that electrons primarily transfer from Zn and C atoms to

the oxygen and hydrogen atoms. The difference charge

density can visually display the distribution of static elec-

tric potential and possible catalytic sites.
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Fig. 7. (a) Predicted energy bands and (b) the difference charge density of Zn4H28C58O13. The yellow and blue

colors represent charge accumulation and depletion, respectively.
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High-Throughput Predictions of Electronic Structures

for Materials in the GNoME Dataset. The GNoME [63]

database is a remarkable collection of 2.2 million stable

crystal structures that have been discovered using large-

scale active learning techniques. This dataset has ex-

panded our knowledge of stable materials by almost an

order of magnitude, providing an unprecedented opportu-

nity for in-depth investigation of material properties and

the development of novel machine learning models. De-

spite the stability of the GNoME materials, their elec-

tronic structures remain largely unknown. While first-

principles calculations could in principle determine the

electronic structures, performing such computationally ex-

pensive calculations for the entire database would be pro-

hibitively costly. Therefore, we employ the universal

HamGNN model, which enables fast, accurate, and high-

throughput predictions of electronic structures across the

whole dataset, offering valuable insights for future theo-

retical predictions and experimental synthesis.

We employ the universal HamGNN model to com-

pute the electronic structures of a total of 188722 struc-

tures from the GNoME database. Our analysis reveals

that 21973 of these structures exhibit insulating proper-

ties, with 3940 direct bandgap insulators and 18033 indi-

rect band gap insulators. Direct bandgap materials have

broad applications in photovoltaics and light-emitting de-

vices due to their efficient electron-hole recombination pro-

cesses. The histogram in Fig. 8 illustrates the distribution

of bandgaps for both insulators and direct bandgap in-

sulators. The figure shows an exponential decline in the

number of insulators as their bandgap values increase. Uti-

lizing this universal Hamiltonian model not only enables

the rapid selection of materials with direct band gaps but

also facilitates the identification of crystals exhibiting flat

bands near the Fermi level. This unique electronic struc-

ture holds great promise as it can give rise to intriguing

properties and phenomena, such as fractional quantum

Hall effects, Bose–Einstein condensation, unconventional

superconductivity, and strong correlation effects. [64–66] Af-

ter conducting a search using HamGNN, we have success-

fully identified 5109 crystals with flat bands. This number

is nearly double compared to the 2379 flat-band crystals

listed in the Materials Flatband Database. In order to

demonstrate the accuracy of this approach for the GNoME

dataset, we take a gapless material and a semiconduc-

tor material with flat bands, Ti6SeS7 and K3SrZr6BI18,

from the GNoME database as examples. Notably, these

two crystals are currently not included in the Materials

Project.

The prediction results for the electronic structures of

Ti6SeS7 and K3SrZr6BI18 are presented in Fig. 9. In

Fig. 9(b), the predicted energy bands of Ti6SeS7 exhibit

excellent agreement with the results obtained from DFT

calculations, as shown in Supplementary Fig. S10(a). In

addition, we compare the Fermi surfaces obtained from

our predicted Hamiltonian matrices with those computed

using DFT in Fig. 9(c). The comparison reveals remark-

able similarities between the two Fermi surfaces, further

validating the accuracy and reliability of our predictions.

As shown in Fig. 9(e), the presence of flat bands at both

HOMO and lowest-unoccupied-molecular-orbital (LUMO)
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levels in the predicted energy bands of K3SrZr6BI18 is

apparent. The predicted flat band electronic structure

is validated by the DFT calculation (see Supplementary

Fig. S10(b)). Figure 9(f) reveals that the flat band at the

LUMO level is primarily formed by atomic orbitals from

Zr and I atoms. This observation suggests a significant

contribution from these elements to the unique electronic

behavior exhibited by this compound. Furthermore, it is

worth noting that our predicted wave function aligns well

with actual calculated results, reinforcing the accuracy of

our computational approach.
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Fig. 9. (a) Crystal structure of Ti6SeS7. (b) Predicted energy bands of Ti6SeS7 by the universal HamGNN model.

(c) Comparison between the predicted Fermi surface of Ti6SeS7 and those calculated using DFT. (d) Predicted

energy bands of K3SrZr6BI18 by the universal HamGNN model. (e) Predicted energy bands of K3SrZr6BI18 by the

universal HamGNN model. (f) Comparison of the HamGNN predicted LUMO wave function at the 𝛤 point and

the DFT calculated LUMO wave function at the 𝛤 point for K3SrZr6BI18.

Discussion. This work not only achieves a universal

electronic Hamiltonian model for the entire periodic ta-

ble but also demonstrates its practicality and reliability

through successful predictions of electronic structures in

various materials. We propose a framework to achieve a

universal Hamiltonian model by training HamGNN on the

crystal’s Hamiltonian matrices obtained from the Materi-

als Project or other large datasets. We have found that in-

corporating energy eigenvalues in the second training step,

in addition to Hamiltonian matrices, is crucial for achiev-

ing a truly universal Hamiltonian model.

The universal model can accurately capture not only

simple systems but also those containing uncommon or

rare transition metal elements. One notable advantage of

this universal model is its ability to handle complex multi-

element systems comprising more than five elements. This

capability opens up new possibilities for studying and un-

derstanding the electronic properties of advanced mate-

rials that often involve intricate combinations of chem-

ical elements. The reliable framework provided by the

universal electronic Hamiltonian model allows for efficient

predictions of electronic structures across the periodic ta-

ble. While the current publicly available GNoME dataset

contains 380000 stable crystal structures, the complete

dataset encompasses an unprecedented 2.2 million stable

materials discovered through large-scale active learning.

We anticipate that with more structures being made

publicly accessible, the Universal Hamiltonian model can

be leveraged to rapidly and accurately compute the elec-

tronic band structures of this vast collection through high-

throughput calculations with much less computational cost

compared to first-principle calculations. This would enable

the identification of a significantly larger number of crys-

tals with desirable electronic properties, driving further

advancements in materials science. This breakthrough

has significant implications for material design, catalysis,

electronics, and other fields that heavily rely on accurate

knowledge and understanding of electronic properties.

Network Details. The equivariant node features are

32 × 0o+128 × 0e+128 × 1o+64 × 1e+128 × 2e+32 ×
2o+64× 3o+32× 3e+32× 4o+32× 4e+16× 5o+8×
5e+8 × 6e, where 32 × 0o means that there are 32 chan-

nels in this feature part, and the features in each chan-

nel are 𝑂(3) irreducible representations with 𝑙 = 0 and

odd parity. The node features utilized in this universal

HamGNN model surpass those employed in our previous

work [22] to enhance the network capacity for describing

the entire periodic table. The universal HamGNN model

has five orbital convolution layers. The spherical harmonic

basis functions used to expand the interatomic directions

are 0e+1o+2e+3o+4e+5o+6e. The interatomic dis-

tance between atom 𝑖 and its neighboring atom 𝑗, which

falls within the cutoff radius 𝑟c, is expanded utilizing the

Bessel basis function:

𝐵(|𝜏𝑖𝑗 |) =
√︂

2

𝑟c

sin(𝑛𝜋|𝜏𝑖𝑗 |/𝑟c)
|𝜏𝑖𝑗 |

. (4)
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The atomic neighbors are determined based on the cutoff

radius of each atom’s orbital basis. The interatomic dis-

tance is expanded using a series of Bessel functions with

𝑛 = 1, 2, . . . , 𝑁b, where 𝑁b represents the number of

Bessel basis functions. In this study, 𝑁b is set to 64.

DFT Details. All the Hamiltonian matrices in the

training set were computed using the PBE functional, with

a Monkhorst-pack grid of 6× 6× 6, and a convergence cri-

terion of 1.0× 10−8 Hartree. The energy cutoff employed

for discretizing the real space is set at 200 Rydberg.

Data and Code Availability. The HamGNN code

is publicly available at https://github.com/QuantumLab-

ZY/HamGNN. The trained network weights for the uni-

versal model, the predicted energy bands for the test set,

and the identified crystals with flat bands are available on

Zenodo (https://zenodo.org/records/10827117).
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