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3DSC - a dataset of 
superconductors including  
crystal structures
Timo Sommer1,2,3, Roland Willa2, Jörg Schmalian  2,4 & Pascal Friederich1,5 ✉

Data-driven methods, in particular machine learning, can help to speed up the discovery of new 
materials by finding hidden patterns in existing data and using them to identify promising candidate 
materials. In the case of superconductors, the use of data science tools is to date slowed down by 
a lack of accessible data. In this work, we present a new and publicly available superconductivity 
dataset (‘3DSC’), featuring the critical temperature TC of superconducting materials additionally to 
tested non-superconductors. In contrast to existing databases such as the SuperCon database which 
contains information on the chemical composition, the 3DSC is augmented by approximate three-
dimensional crystal structures. We perform a statistical analysis and machine learning experiments to 
show that access to this structural information improves the prediction of the critical temperature TC of 
materials. Furthermore, we provide ideas and directions for further research to improve the 3DSC. We 
are confident that this database will be useful in applying state-of-the-art machine learning methods to 
eventually find new superconductors.

Background & Summary
Superconductors are materials in which the electrical resistance is zero when the temperature drops below a 
critical temperature Tc. Furthermore, superconductors are perfect diamagnets that expel magnetic fields via 
the Meissner effect. These properties make superconductors very useful for many high-power applications 
such as efficient electric power conversion, lossless power transmission, and ultra-strong magnets, as well as 
high-sensitivity sensor materials e.g. superconducting quantum interference devices and photon detectors1,2. 
The discovery of new superconducting materials with optimized properties will enable e.g. the use of cheaper 
coolants due to increased critical temperatures, stronger magnets due to improved magnetic properties, and 
simpler production of superconducting wires due to improved mechanical properties.

The critical temperature Tc can be very sensitive to small changes in the crystal structure, for example to 
changes in the interatomic distances via mechanical pressure or chemical pressure3, i.e. the deformation of the 
lattice by replacing one atom with another element with same valency but different size. Despite the success of 
understanding the mechanism behind superconductivity within a microscopic theory, such as the theory by 
Bardeen, Cooper and Schrieffer4 and strong-coupling generalizations thereof, it is to date difficult to faithfully 
predict the critical temperature Tc of new materials. Even though the prediction of the critical temperature has 
improved a lot over the last years and decades for well-understood classes of superconductors, the predictabil-
ity of the superconducting onset temperature remains a major challenge in the material’s research endeavour, 
in particular in view of exploring new material candidates. This is largely caused by the dependence of Tc on 
subtle details of atomic arrangements in the crystal structure. Input parameters of the microscopic, low-energy 
theories, such as the electronic density of states at the Fermi level, the phonon spectrum, and the electron-lattice 
coupling, are not easily related to the chemical formula. Thus, when predicting the critical temperature Tc with 
machine learning, a first step to narrow this gap is to have access not only to the chemical composition of the 
material, but also to the exact 3D structure of the crystal.
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Machine learning has been widely used for the prediction of materials properties. Saal et al.5 collected and 
reviewed a big number of machine learning generated predictions which have been confirmed experimentally 
afterward in applications ranging from organic LEDs over new binary and ternary crystal structures, per-
ovskites, metallic glasses and metal-organic-frameworks to superhard materials. Furthermore, machine learn-
ing was used to predict the critical temperature Tc of superconductors using the SuperCon database6 as training 
data, which is the largest and most commonly used dataset of superconductors. Previous papers have also made 
preprocessed subsets of the data available for further research7,8.

There have been many attempts to predict the critical temperature Tc of a material using the SuperCon data-
base. Hamidieh8 used a gradient boosting model (XGB9) trained on MAGPIE features10 to predict Tc. Aketi et 
al.11 used gradient-boosted decision trees, Matsumoto et al.12 used random forests and Le et al.13 used Bayesian 
neural networks on very similar features, while Gaikwad et al.14 compare multiple machine learning models. 
Konno et al.15 and Zeng et al.16 used a convolutional neural network (CNN) and represented the chemical for-
mula as elements on a grid. Li et al.17 used a hybrid neural network consisting of a CNN and a recurrent neural 
network (RNN) which is trained on Atom2Vec features18. Dan et al.19 use a convolutional gradient boosting 
decision tree (ConvGBDT). Sizochenko et al.20 found that an often-used subset of the SuperCon contained a lot 
of duplicate entries and repeated their analysis with the cleaned dataset. Meredig et al.21 showed that random 
splits for the cross-validation give overly confident model evaluations. Roter et al.22 trained a bagged tree model 
on the chemical composition and argued that physical features such as the Fermi energy would be helpful for 
increasing the performance of their model if they were available for more materials.

Data availability is the most important prerequisite for the development of (supervised) machine learning 
models for materials property prediction. In particular, informative and complete information on the materials 
is essential for the training of accurate machine learning models. All of the studies discussed above were based 
on representing materials only by their chemical composition, which is not a unique and complete representa-
tion of materials. Yet, most SuperCon entries contain only the chemical formula and critical temperature Tc of 
each material. Structural data such as space group and crystal system are only sparsely recorded and the full 
three-dimensional crystal structure is never given. Therefore, all of the aforementioned predictions of the critical 
temperature using the SuperCon database were limited to representations of the chemical composition of each 
material.

One notable exception of using only chemical formulas to predict critical temperatures is the work of Stanev 
et al.7. They developed a superconductivity classifier based on matching the chemical compositions of mate-
rials in the SuperCon with the chemical compositions of materials in the AFLOW database and used tabular 
structural and electronic features such as the space group and the energy per atom as additional features. In this 
pioneering work, 1500 materials could be matched, half of them being superconductors. Stanev et al. argued 
that structural information is helpful in predicting superconductivity, yet realized the issue of severely reducing 
the size of the dataset when doing this matching. As of today, the matched crystal structures were not published.

Recently, two more databases dealing with superconductors were presented in the literature. The SuperMat23 
database and the SC-CoMIcs24 database are corpora of manually annotated texts from papers about supercon-
ductors. The annotations consist of different entities such as chemical formula and critical temperature with 
which certain phrases in the texts have been labeled. These corpora can be used for tasks such as training a 
named entity recognition model such as SciBERT25 on automatically labeling new papers, which was demon-
strated by Yamaguchi et al.24 Foppiano et al.23 also publicly provide their annotation procedure to encourage 
others to continue this work. So far, these annotated corpora are not publicly available. In the future, they might 
be useful to automatically extract information about superconductivity from literature.

Court et al.26 used the already trained ChemDataExtractor27 to extract information of superconductors and 
magnetic materials from literature. They found approximately 20,400 superconductors and magnetic materials 
together with their chemical compositions and respective phase transition temperatures. The focus of the study 
was the prediction of the phase diagram of magnetic and superconducting materials. Furthermore, some of the 
entries were paired with crystal structures from the Crystallographic Open Database (COD)28. The authors pro-
vide a link to an interactive web app and the data, yet, the provided link is currently inactive. Another recently 
initiated superconductor database is the Superconducting Research Database29. In this online database, super-
conductors can be submitted with their exact three-dimensional crystal structure and critical temperature Tc. 
This database currently contains 14 superconductors which limits its usefulness for machine learning processes.

In this work, we extended the structure matching approach by Stanev et al.7 to build a new database (called 
3DSC) of experimentally tested superconducting and non-superconducting materials30. This database is made 
publicly available. The 3DSC database features the critical temperature of superconductors as well as the approx-
imated 3D crystal structure of each material. The core idea is to match materials in the SuperCon database 
with (modified) crystal structures of the Materials Project31,32 and the Inorganic Crystal Structure Database33–35 
(ICSD). In addition to matching only exact chemical compositions (as in Stanev et al.7), we employ a systematic 
adaptation algorithm that approximates the three-dimensional crystal structures of materials without perfect 
match by artificial doping of similar crystal structures. For example, the crystal structure of the SuperCon entry 
CuLa1.95Nd0.05O4 (which has no perfect match in the Materials Project database) is approximated by taking the 
3D crystal structure of CuLa2O4 and partially replacing La with Nd at the respective crystal positions. This step is 
important to maximize the number of matched materials since the SuperCon contains many entries with doped 
materials, which otherwise would mostly be discarded.

In this paper, we introduce and analyze two different 3DSC databases. Both are based on the SuperCon 
database, but one uses structures from the Materials Project (3DSCMP) and one uses structures from the ICSD 
(3DSCICSD). Using our matching and adaptation algorithm, we are able to match 5,759 (3DSCMP) and 9,150 
(3DSCICSD) superconducting and non-superconducting materials from the SuperCon. We publicly provide 
the full 3DSCMP dataset on figshare30 including the critical temperature Tc and approximate three-dimensional 

https://doi.org/10.1038/s41597-023-02721-y


3Scientific Data |          (2023) 10:816  | https://doi.org/10.1038/s41597-023-02721-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

crystal structures. However, structures from the ICSD must not be (re-)published. Therefore, we refrain from 
publishing the 3DSCICSD. The subset of the 3DSCICSD that we provide under this link only contains the ICSD IDs 
necessary for reproducing the full dataset. The necessary structures can be downloaded with an ICSD license 
and artificially doped using our code in the aforementioned repository. However, despite not being able to pub-
lish this database, we have decided to present the 3DSCICSD in this paper along with the 3DSCMP, since it contains 
more structures and slightly different information than the 3DSCMP.

Methods
overview of 3DSC data generation. In this section, we describe our algorithm to match entries of the 
SuperCon database based on their chemical formula with 3D structures from crystal structure databases (see 
Fig. 1). We use and compare two different crystal structure databases, the Materials Project and the ICSD. We fur-
thermore use the copy of the SuperCon database published by Stanev et al.7. All databases are cleaned as described 
in Sec. ‘Data and dataset cleaning’.

In the first step of the matching algorithm to build our 3DSC database, each SuperCon entry is paired with 
each crystal structure. If the chemical formula matches perfectly after normalization, the SuperCon entry is 
paired to the crystal structure and added to our database. If the chemical formula is close but not equal, we 
performed an artificial doping process to modify the crystal structure and to aim for a perfect match with the 
chemical formula of the SuperCon entry. This process is described in more detail in Sec. ‘Matching algorithm of 
SuperCon entries and 3D crystal structures’.

Because this matching and adaptation algorithm generally matches multiple crystal structures to each 
SuperCon entry, we conclude the process by filtering the matches according to specific criteria and keeping only 
the most optimal matches. After applying this filter, we are left with the final 3DSC database which contains 
chemical formula, critical temperature Tc, and the (in many cases approximate) crystal structure. In the case of 
the Materials Project database, the final 3DSCMP dataset contains 5,759 SuperCon entries matched with 5,773 
crystal structures. In the case of the ICSD, the final 3DSCICSD dataset contains 9,150 SuperCon entries matched 
with 86,490 crystal structures. One reason for this high number of matched crystal structures is that the ICSD 
has a large number of entries with the same crystal structure at different crystal temperatures.

Data and dataset cleaning. SuperCon. The SuperCon database is the largest database of superconductors 
and has been used multiple times in the literature to predict the critical temperature of superconductors with 
machine learning methods. It contains approximately 33,000 materials that have been tested for superconduc-
tivity. Approximately 10,000 of the entries are duplicates of the same material with the same chemical formula. 
However, the SuperCon database features only the chemical formula of each material, whereas structural data 
such as space group and lattice type is only sparsely recorded and the full crystal structure is never given. Since the 
SuperCon database itself was unavailable at the beginning of this work and has only recently been made available 
again, in this study we use the already cleaned and published subset of the SuperCon dataset published by Stanev 
et al.7 which contains 16,400 different materials with approximately 4,000 non-superconductors. The dataset can 
be found on GitHub (https://github.com/vstanev1/Supercon) and includes the chemical formula and the critical 
temperature Tc of each material.

We found that this dataset was not fully cleaned yet. We assume that in the original study chemical formulas 
were compared as strings, but sometimes the order of elements in the string was different even though it was the 
same material. For these 21 materials, we averaged the critical temperatures according to the same algorithm as 
used in Stanev et al., i.e. taking the mean and excluding the material if the standard deviation was greater than 
5 K. Because we are averaging over data points some of which are already averaged, the resulting average might 
not be the same as in the original dataset. Additionally, we found that some chemical formulas were invalid, 
e.g. in the formula Bi4.4Sr3.6Ca2Cu4OY the Y was considered to represent yttrium, but it actually represented an 
unknown quantity of oxygen (the SuperCon database strictly follows a nomenclature, where each element has 
a count, even if the count is 1). Excluding these entries reduced the dataset by 128 entries. We also excluded 4 
entries that had chemical formulas with more than 150 atoms because these are likely mistakes in the database. 
Finally, we decided to exclude the few entries with the heavy elements americium (Am), curium (Cm), and polo-
nium (Po) to reduce the number of entries with rarely occurring elements. After all cleaning steps, we are left with 

Fig. 1 A schematic view of the matching and adaptation algorithm.
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15,758 SuperCon entries of which 3,854 are non-superconductors. The maximum critical temperature is 143 K 
for Ba2Ca1.98Cu2.9Hg0.66Pb0.34O8.4. Non-superconductors are encoded as having a critical temperature of 0 K.

Crystal structure datasets. As sources for the crystal structures, we used the Materials Project and the ICSD. 
The Materials Project contains approximately 139,000 DFT calculated structures and electronic features and is 
openly accessible. The ICSD contains approximately 243,000 mostly experimental structures and is accessible 
only with a license. The ICSD database was cleaned before further processing: 19,077 DFT calculated (rather 
than experimentally measured) entries were excluded to make the dataset more consistent. 18,147 entries were 
excluded because the chemical composition given by the ICSD and extracted from the crystal structure using the 
python package pymatgen36 were inconsistent. Similarly, 3,195 entries were excluded because the space group 
given by the ICSD and the one recognized with pymatgen were inconsistent. For space group analysis we used 
an angle tolerance of 5° (the pymatgen default) and a symmetry tolerance of 0.1Å for the Materials Project struc-
tures (the value recommended in pymatgen for less well refined structures) and values of 0.01Å  (the pymatgen 
default) and 0.1Å  for the ICSD structures and excluded all crystal structures with unclear space groups. Finally, 
3,132 more entries were excluded because of an invalid chemical formula. Even though not technically invalid, 
we decided to also exclude materials including deuterium and tritium. Because the ICSD also has the crystal 
temperature Tcry recorded for most materials, entries without crystal temperature were assumed to be recorded 
at room temperature (293 K).

The Materials Project was checked as well but no entries had to be excluded due to the aforementioned 
reasons. However, materials without recorded Ehull were excluded since this feature was needed for the match-
ing and adaptation algorithm (see Sec. ‘Matching algorithm of SuperCon entries and 3D crystal structures’). 
Because the Materials Project structures had no crystal temperature given, the crystal temperature Tcry was set to 
0 K in order to have a consistent set of features for the machine learning models.

Matching algorithm of SuperCon entries and 3D crystal structures. The following section describes 
the algorithm used for matching and adaptation (from now on referred to as artificial doping) of SuperCon entries 
and crystal structures in more detail. The aim is to find one or multiple crystal structures for as many SuperCon 
entries as possible. Therefore, each SuperCon entry is paired with each crystal structure and the similarities 
between the chemical compositions are compared. In order to increase the number of matched entries, we nor-
malize the chemical formulas before matching and perform artificial doping to approximate crystal structures of 
materials where the crystal structure of a very similar material is known.

Normalization of chemical formulas. Instead of matching chemical formulas only when they match exactly, 
we also match chemical formulas if they differ by a constant factor. For example, the SuperCon entry CuLa2O4 
would be matched by a crystal structure with the chemical formula Cu2La4O8 with a relative factor of 1/2. This 
normalization procedure increases the matched entries by a large factor. We attribute this finding to potential 
experimental difficulties in determining the exact number of atoms in the unit cell of each material.

Artificial doping. If the chemical formulas of SuperCon entry and crystal structure do not match perfectly 
but are still similar, we perform artificial doping. Artificial doping means that we use a crystal structure with a 
similar chemical formula as a proxy crystal structure for the real crystal structure of the SuperCon entry. We 
then partially replace the atoms at given crystal positions with other chemical elements, imitating real physical 
doping. Statistically occurring vacancies can be introduced as well by using nothing as dopant and simply reduc-
ing the occupancy of the regarding crystal site. After the replacement, the chemical formula of the new crystal 
structure matches perfectly the required chemical formula of the SuperCon entry. Note that this algorithm only 
changes the occupancies of the crystal sites. It does not change coordinates or interatomic distances. Besides, 
this algorithm can only be applied if the original chemical formulas are close enough, so that the real crystal 
structure of the SuperCon entry is likely to have similar crystal parameters (such as space group and lattice 
parameters) as the proxy crystal structure. Therefore, in order to keep the introduced bias small, we perform 
artificial doping only if the following requirements are met:

 (a) The chemical formulas are similar: We define three similarity metrics of chemical formulas, which are 
checked after normalizing the chemical formula of the crystal structure as explained above. These metrics 
are the absolute difference of atom numbers
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xsc,i and xcry,i are the quantities of element i of the chemical formulas of SuperCon entry and crystal 
structure, respectively. A pair consisting of a SuperCon entry and a crystal structure is considered similar if 
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i0 30 OR 0 20abs,i rel,i∆ ≤ . ∆ ≤ . ∀  and Δtotrel ≤ 0.15, and the SuperCon entry has the same elements or up 
to one additional element as the crystal structure. One exception is that pure elements only match the same 
pure element.
Since artificial doping makes the assumption that the structure of the initial and final crystal are close, we 
chose a SuperCon-crystal structure match to be acceptable, if the chemical formulas were similar enough 
so that the crystal structures of those materials would probably have the same space group. On the other 
hand, if the chemical formulas were different enough so that they would probably have different space 
groups, this match was considered to be not acceptable. Based on these considerations, we assigned a num-
ber of randomly selected example matches into acceptable and not acceptable and then chose the thresh-
olds in a sensible way such that they would mirror the manual assignments. Note that the exact threshold 
values only partially influence the final result, as only the most optimal matches according to additional 
criteria (see later) will be added to the final datasets. Table 1 illustrates the procedure by showing examples 
of chemical formulas and whether they are considered similar, based on the definitions above.
The upper bound on Δrel,i ensures that for each element, the relative difference of the chemical formulas is 
at most 20%. However, this requirement does not work well for doped materials such as CuLa1.95Nd0.05O4. 
This chemical formula is close to one with a higher Nd doping concentration (e.g. CuLa1.90Nd0.10O4), even 
though Δrel is 67% for Nd. Therefore, the metric Δabs,i allows for absolute differences of 0.3 or less for an 
element even though the requirement on Δrel would be violated. The metric Δtotrel ensures that the 20% 
boundary is maxed out preferably for elements with a low number of atoms (and therefore low weight) in 
the chemical formula.

 (b) The necessary replacement of elements for artificial doping is unambiguous: In a real crystal structure, not 
all crystal sites occupied by the same chemical element are equivalent. The dopant might prefer specific 
crystal sites due to differences in the local environment and thus free energy. Without further analysis, our 
artificial doping algorithm cannot determine which of the possible crystal sites becomes doped. There-
fore, artificial doping is performed only if there is not more than one set of equivalent crystal sites for the 
dopants. In this case, the dopants are distributed equally over all equivalent crystal sites (see Fig. 2). In 
Fig. 2a, there is only one set of equivalent Rh sites. Therefore Rh can be unambiguously replaced with Ir. In 
Fig. 2b there are two sets of equivalent Bi sites. It is not obvious which of these sites would be doped with 
Sb, therefore no artificial doping is performed.
We define equivalent crystal sites as all crystal sites which would have the same probability of being doped 
with a certain element, i.e. the sites have the same Wyckoff position (they are symmetrically equivalent) or 
the sites are already doped or partially occupied by the same elements in the same quantities and therefore 
empirically behave identically under doping. The latter condition is important since a large number of 
cuprates in the ICSD would otherwise be excluded.

 (c) The replacement does not lead to crystal sites with more than two elements: Fig. 2c shows an example of this 
requirement. Even though the necessary replacement of elements would be unambiguous, we decided to 
discard such cases, so that each crystal site is doped with at most two different elements.

 (d) Artificial doping does not add or remove a crystal site: Artificial doping is supposed to introduce only a mi-
nor bias. As such, it is acceptable to slightly modify the occupation numbers quantitatively, but fully remov-
ing a crystal site would constitute a severe change in the crystal structure. Furthermore, adding a crystal site 
is not possible since its position cannot be determined without further analysis. This is illustrated in Fig. 2d. 
Note that this only applies to full crystal sites. Statistical vacancies are still included as partial occupancies.

If requirements (a–d) are met, the appropriate quantity of the host element is replaced with the guest element 
at all equivalent crystal sites. In case of statistical vacancies, the guest element that is introduced is nothing, 
which effectively just decreases the total occupancy of the crystal sites. In the ICSD, each element has its oxida-
tion state given. When doping in a completely new element, its oxidation state is not known. In this case, we sim-
ply use the oxidation state of the host element for the new element. Even with artificial doping not all SuperCon 
entries can be matched with a crystal structure. These entries are discarded.

Keep only best matches. The algorithm described above will generally match multiple crystal structures to each 
SuperCon entry. Therefore we identify the best matches by applying specific criteria: In the case of the Materials 
Project dataset, we first rank by the energy above hull Ehull (which is calculated in the Materials Project dataset 

SuperCon Crystal structure max(Δabs) max(Δrel) Δtotrel Comment

CuLa1.95Nd0.05O4 CuLa1.90Nd0.10O4 0.05 0.67 0.01 Matches after modification of the stoichiometry of La and Nd.

CuLa1.95Nd0.05O4 CuLa2O4 0.05 2.0 0.01 Matching with modification. One site (La) of the unit cell is 
partially replaced by another element (Nd).

CuLa2O4 Cu2La4O8 0 0 0 Matches perfectly (normalized chemical formulas are identical).

NbGeC1.5N0.5 NbGeC1.0N1.0 0.5 0.67 0.25 Does not match because each metric is above its threshold 
(severe stoichiometry change would be required).

W5Tc7 W6Tc6 1 0.18 0.17 Does not match because Δtotrel is above the threshold of 0.15.

Table 1. Examples of pairs of chemical formulas of SuperCon entries and crystal structures. For each pair, the 
columns show the three similarity metrics (Eqs. 1–3). The subjective criterion for deciding if a match should be 
accepted or not was based on the consideration if both materials would have the same space group or not. 
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for each crystal structure) and then by Δtotrel. In both cases, lower values are preferred. If more than one crystal 
structure has the same optimal Ehull and Δtotrel, both are kept in the database. In the case of the ICSD dataset, 
the ranking criterion is whether the crystal temperature is reported (preferred structures are the ones where 
the crystal temperature was given). If multiple crystal structures fulfill this criterion, all of them are added to 
our database. The ranking criteria were determined using hyperparameter optimization (see Supplementary 
Information S2.1). The final 3DSC databases contain multiple crystal structures matched with the same 
SuperCon entry. This one-to-many mapping arises because multiple crystal structures might have the exact 
same rank after sorting. In the case of the 3DSCMP, out of 5,759 SuperCon entries, only 14 are matched with each 
2 crystal structures, so this is not a dominating issue. However, in the case of the 3DSCICSD, the 9,150 SuperCon 
entries are matched with 86,490 crystal structures (see statistical analysis in Sec. ‘Statistical data analysis’).

Data Records
The 3DSCMP and the 3DSCICSD datasets are publicly available on figshare30. For the 3DSCMP, the directory ‘cifs/’ 
contains the cif files of all structures in the 3DSCMP. The file ‘3DSC_MP.csv’ contains a table with all 5,759 entries 
in the 3DSCMP. Note that for the 3DSCICSD, only the chemical formula and Tc of each material as well as the 
ICSD ID of the original ICSD structure are given in the file ‘3DSC_ICSD_only_IDs.csv’ due to the restrictive 
ICSD license permissions. In order to generate the full 3DSCICSD database, an ICSD license is required. Once the 
structures are downloaded, the matching and adaptation algorithm as described in our GitHub repository can 
be performed (https://github.com/aimat-lab/3DSC).

The most important entries of the 3DSCMP and the 3DSCICSD are the chemical formula, the critical tempera-
ture in Kelvin, and the path to the CIF file which contains the corresponding three-dimensional crystal structure 
of each material. Non-superconductors are encoded as having a critical temperature of Tc = 0 K. Additionally, 
the 3DSCMP contains additional information from the original Materials Project dataset, e.g. electronic features 
derived from the original structures (before artificial doping) such as the band gap, the Fermi energy, the energy 
above hull, or the total magnetization. The electronic and phonon density of states and band structures (if avail-
able in the Materials Project) are retrievable using task IDs.

The 3DSCICSD in its full form (after re-running the matching and adaptation algorithm with structures from 
the ICSD) has similar entries as the 3DSCMP. One difference is that structures from the ICSD do not contain any 
electronic features such as the band gap or the Fermi energy of the original structures. However, the 3DSCICSD 
contains the crystal temperature Tcry at which the structures were measured, which is missing in the 3DSCMP. 
Since Tcry was not reported for all of the structures and in doubt assumed to be room temperature (see Sec. ‘Data 
and dataset cleaning’), an additional binary entry indicates whether Tcry was given explicitly in the ICSD or not. 
Both datasets also contain entries that were important for the matching and adaptation algorithm and the anal-
ysis in this paper. These entries are important to simplify the reproduction and further work on improving the 
3DSC. A more in-depth description of the entries and their exact names in the 3DSCMP and the 3DSCICSD can be 
found in the 3DSC repository (https://github.com/aimat-lab/3DSC).

Technical Validation
Statistical data analysis. Fig. 3a,b show the cleaning and matching statistics for the 3DSCICSD and the 
3DSCMP, respectively. ‘No similar chemical formulas’ means that no crystal structure is close enough to be 
matched based on the metrics presented in Sec. ‘Matching algorithm of SuperCon entries and 3D crystal struc-
tures’. ‘No artificial doping possible’ means that artificial doping can not be performed for one of the other rea-
sons explained in Sec. ‘Matching algorithm of SuperCon entries and 3D crystal structures’. As a result of the 
matching algorithm, approximately 57% of SuperCon entries can be matched with crystal structures from the 
ICSD and approximately 36% of SuperCon entries can be matched with structures from the Materials Project. 
Approximately 93% (5337) of the materials in the 3DSCMP are also in the 3DSCICSD.

The bar plots in Fig. 3c,d show how many material-crystal structure matches are obtained by performing the 
proposed matching algorithm in contrast to previously reported matching methods which only compare the 
absolute chemical formulas7. Matching normalized chemical formulas as well as performing artificial doping 
significantly increases the number of matched materials. While normalizing chemical formulas before matching 

Fig. 2 Examples of SuperCon entries and respective candidate crystal structures before artificial doping. The 
checkmark shows if it is possible to use artificial doping to modify the chemical formula of the crystal structure 
(top) to fit the chemical formula of the SuperCon entry (bottom). The numbers on the atoms denote each set of 
crystal sites with the same Wyckoff position. (a) shows a crystal with only one Wyckoff position for all Rh sites, 
(b) shows a crystal with two different Wyckoff positions for the Bi sites, (c) would generate a crystal structure 
with three elements on one site, and (d) would require an additional crystal site.
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is simple, it doubles the amount of SuperCon entries that can be matched for the 3DSCICSD and even triples it 
for the 3DSCMP. In addition, artificial doping roughly triples the matched materials for each dataset again. In 
contrast to standard matching, our proposed matching algorithm leads to a gain of 773% and 660% of matched 
SuperCon entries for the 3DSCICSD and the 3DSCMP respectively.

When training machine learning models on datasets, an unbalanced distribution of labels can introduce bias, 
leading to systematic over- or underestimation of the critical temperatures in certain ranges. Fig. 4a,b shows 
the distribution of Tc in the datasets for the 3DSCICSD and the 3DSCMP database, respectively. On a logarithmic 
scale, the number of superconductors per Tc is relatively constant. One exception is the relatively high number 
of superconductors with a critical temperature of approximately Tc = 90 K, which can be attributed to a widely 
studied class of superconductors based on YBa2Cu3O7 which has a critical temperature of Tc = 92 K. Elemental 
prevalence plots and further statistics of the distribution of Tc, broken down into different groups of supercon-
ductors, can be found in the GitHub repository as well.

Finally, it is important to evaluate the statistical influence of having multiple crystal structures per chemical 
formula in the 3DSCICSD database. This is an issue mostly for the 3DSCICSD since the 3DSCMP dataset rarely has 
multiple structures per SuperCon entry. However, with a different choice of the sorting criteria, this issue would 
also exist for the 3DSCMP since it is an inbuilt consequence of the matching approach.

Fig. 5a shows Tc dependent crystal structure counts in the dataset. For comparison, Fig. 4a shows the distri-
bution of different superconductors instead of crystal structures. We find that the ratio of high-Tc data points to 
low-Tc data points has increased (ignoring the very last bin in the histogram). This shows that high-Tc supercon-
ductors such as cuprates have matched with more crystal structures per material than low-Tc superconductors. 
This might pose a potential issue because the effective weight of high-Tc superconductors to low-Tc supercon-
ductors has shifted from what it was before. To mitigate this issue, we have used a sample weight equal to the 
inverse of the number of crystal structures per material in all machine learning experiments.

Some materials have matched a lot of crystal structures as shown in Fig. 5b. Note that there is an exponential 
decrease until approximately 20 crystal structures per SuperCon entry. Most data points beyond this number are 
artifacts due to series measurements of the same crystal with varying temperatures. Furthermore, some materi-
als have matched crystal structures with a large number of different space groups as shown in Fig. 5c. The color 
coding shows that many of these different space groups are data points that are measured at room temperature. 
This potentially poses an issue, because a machine learning model trained on the data will “see” many different 
crystal structures with different space groups and the same chemical formula, which all have the same critical 
temperature Tc. This problem is partially mitigated by having many crystal structures measured at low temper-
atures as shown in Fig. 5d. Note that for a better overview, all of the data points with Tc > 300 K are collected in 
the last bar. We assume that the low-temperature crystal structures are helpful in predicting Tc, because they are 

Fig. 3 Statistics of the matching algorithm. Panels (a,b) show the number of SuperCon entries that are lost 
in each step of the algorithm for the 3DSCICSD and the 3DSCMP dataset, respectively. Panels (c,d) show the 
numbers of SuperCon entries in the final dataset that were perfectly matched with crystal structures based on 
the absolute chemical formula, the normalized chemical formula, and the amount generated using the artificial 
doping algorithm.
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more likely to be the superconducting structures. However, the issue of having multiple very different crystal 
structures mapping to the same critical temperature in the 3DSCICSD has to be kept in mind and will be discussed 
in Sec. ‘Limitations and perspective’.

Machine learning results. For all experiments in this section, we have used a gradient boosting (XGB) 
model with the default hyperparameters of the XGBoost Scikit-Learn API version 1.4.0 (https://xgboost.readthe-
docs.io/en/release_1.4.0/python/python_api.html#module-xgboost.sklearn). For the cross-validation, we have 
used n randomly repeated 80:20 splits (n = 25 for 3DSCICSD, n = 100 for 3DSCMP). In all our machine learning 
experiments, following Meredig et al.21 we accounted for some extrapolation between the train and test set to 
make the task more realistic: We grouped the materials in the train and test set by their chemical system so that 
materials with the same chemical system are either all in the train set or all in the test set. The chemical system of a 
material is defined as the set of all chemical elements which make up the material (incl. dopants), e.g. Ba-Cu-O-Y 
for YBa2Cu3O7. We also played around with using Random Forests or Neural Networks, but decided to use XGB 
models without hyperparameter optimization, so that an additional validation set would not be necessary, since 
this would have been difficult to implement with the large number of repetitions. Even though this initial small 
trial was based on the test set, due to the large number of repetitions of train/test splits we believe the reported 
performance to be a representative measure of the dataset.

Fig. 4 The distribution of SuperCon entries per critical temperature Tc for the 3DSCICSD (a) and the 3DSCMP (b).

Fig. 5 Statistics regarding the mapping of one SuperCon entry to multiple crystal structures in the 3DSCICSD. 
(a) shows a histogram of the number of crystal structures per Tc. (b) shows the number of candidate crystal 
structures generated by the artificial doping algorithm per SuperCon entry. (c) shows a histogram of the 
number of different space groups for each SuperCon entry, both for all crystal temperatures and only for 
structures at room temperature. (d) shows the number of crystal structures at a given crystal temperature Tcry. 
For a better overview, all structures with a crystal temperature Tc > 300 K are collected in the last bar. 50% of the 
crystal structures have a crystal temperature Tcry < 273 K.
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We computed the Mean Squared Logarithmic Error (MSLE) for each repetition and report the mean as well 
as the standard error of the mean of the MSLE values. The MSLE metric was also used as the loss function of 
every single model, due to the distribution of Tc values in our dataset. Whenever possible, the same train-test 
splits were used in different experiments. Additionally, each crystal structure was given a sample weight of the 
inverse of the number of crystal structures for this SuperCon entry, so that the total weight for every SuperCon 
entry was the same.

Before being passed to the XGB model, the critical temperature Tc was approximately logarithmically scaled 
using T T Tarcsinh( /2 )c c c

0=′  with T 1 Kc
0 = . The arcsinh(x/2) was chosen because it converges faster to log(x) 

than log(x + 1). To represent the chemical formula as a numerical vector we used MAGPIE features10. To repre-
sent the crystal structures we developed disordered SOAP (DSOAP) features, an extension of SOAP features37 
for disordered crystal structures, and some symmetry information, as explained in the Supplementary 
Information S1. Additionally, we concatenated the MAGPIE features of the chemical formula when representing 
the crystal structure.

Importance of structural information. The performance of the XGB models trained with structural information 
on the 3DSCICSD and the 3DSCMP dataset is shown in Table 2. Additionally, the performances on both datasets 
when trained only on the chemical formula are shown as a reference. Fig. 6 shows learning curves in which the 
performance of the XGB model with and without structural information is plotted for different train set sizes.

For both the 3DSCICSD and the 3DSCMP, training on the structural information improves the prediction of the 
critical temperature Tc, despite the noise introduced by probably not always matching the correct structure. This 
is true even in the low-data regime as shown in Fig. 6. As an example, to convey a sense for the MSLE, an MSLE 
of 0.748 for a superconductor with a true Tc of 1 K, 10 K and 100 K corresponds to an absolute error of 1.16 K, 
6.37 K and 58.47 K respectively. These numbers have been calculated by using the definition of the Squared 
Logarithmic Error = + − +� �y y ln y ln ySLE( , ) ( (1 ) (1 )) 2 with true target y and predicted target �y . 
Rearranging and solving for �y  gives �y y SLE(1 )exp( ) 1= + − − . Using the definition of the absolute error 

= −y yAE ∣ ∣�  leads to the values stated above. In general, the MSLE is lower for the 3DSCMP than for the 
3DSCICSD. We assume that this is due to the fact that the 3DSCICSD contains more doped materials. In such mate-
rials, slight changes in the feature space can correspond to large changes in Tc. Therefore, the 3DSCICSD might be 
harder to predict than the 3DSCMP.

Furthermore, while the test error of the models with structural information is smaller, the training error is 
actually larger than when training on the chemical formula. This is a sign that including the structural infor-
mation leads to less overfitting of the models. These results show that information about the 3D structure of the 
crystal structure is crucial for the prediction of the critical temperature, particularly for better generalization.

A consequence of the matching algorithm is that the 3DSCICSD and the 3DSCMP contain fewer materials than 
the original SuperCon database from Stanev et al.7. As a reference, we compare our new XGB model trained on 

Dataset Features MSLE (test) MSLE (train)

3DSCICSD
Chem. formula 1.176 ± 0.095 0.155 ± 0.005

Structure 1.085 ± 0.073 0.275 ± 0.008

3DSCMP
Chem. formula 0.776 ± 0.010 0.078 ± 0.001

Structure 0.748 ± 0.010 0.135 ± 0.001

Table 2. The final results of the XGB models trained on the MAGPIE (“chem. formula”) and the MAGPIE + DSOAP 
features (“structure”) for the 3DSCICSD and the 3DSCMP. We report the mean and standard error of the MSLEs of  
25 and 100 randomly repeated 80:20 splits of the 3DSCICSD and the 3DSCMP respectively. 

Fig. 6 A log-log plot of the learning curve of the 3DSCICSD (a) and the 3DSCMP (b) with and without access to 
structure-aware MAGPIE + DSOAP features. Note the different scales of the MSLE axes in (a) and (b).
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the 3DSC database with DSOAP features (see Table 2) to XGB models trained on the full SuperCon data with 
MAGPIE features. To make the results comparable, we used exactly the same test sets as before. Additionally, to 
stay within the extrapolation setting, we removed materials with chemical systems which already occur in these 
test sets. The resulting MSLE on the test set is 1.092 ± 0.028 for the 3DSCICSD and 0.704 ± 0.006 for the 3DSCMP. 
It is not a surprise that for the 3DSCMP, these results are slightly better than when training on the 3DSCMP 
(MSLE = 0.748), which contains only 36% of the materials in the full SuperCon. In contrast, the fact that models 
trained with structural information on the 3DSCICSD perform better (MSLE = 1.085) than when trained on the 
full SuperCon with twice as much data shows how useful the structural information is. This shows the potential 
of data-driven approaches, given that enough data is published according to FAIR and AI-ready standards38,39.

Importance of structural information for different groups of superconductors. The SuperCon dataset is very clus-
tered, with many data points coming from narrow groups of materials. Having access to the 3D crystal structure 
information might influence different superconductor groups in different ways. In order to test the performance 
within different groups of superconductors with and without structural information, we have partitioned the 
3DSCICSD and the 3DSCMP dataset into seven different datasets containing only one class of superconductors 
each, namely cuprates, ferrites, heavy fermion materials, Chevrel phases, oxides and carbon-based materials. 
This grouping is based on the chemical formula and is done automatically when cleaning the SuperCon dataset 
in the matching and adaptation algorithm. The group “others” consists of many electron-phonon superconduc-
tors, but can also include unconventional superconductors. It collects all materials that do not fall into the other 
classes and at the same time do not have enough data to generate a new class. If a superconductor was attributed 
to multiple groups, it was excluded from this analysis. The number of materials in each group and for each data-
set is shown in Table 3. All following models are trained and tested on only one group of superconductors each.

To compare the influence of the structural features for each group independently, we trained XGB models 
with 5-fold cross-validation grouped by chemical system (see Sec. ‘Machine learning results’) on each group, 
once only with MAGPIE features, encoding only the chemical formula, and once with MAGPIE + DSOAP fea-
tures, encoding the crystal structure. The results on the test and train set are shown in Fig. 7. For the test error, 
the influence of the structurally aware MAGPIE + DSOAP features is not the same across all groups. Overall, 
the difference in performance between MAGPIE and MAGPIE + DSOAP features is always smaller than the 
standard error, which makes the difference not statistically significant. However, one can still analyze some 
trends: The cuprates are the group where the experiments with structural information have the most advantage 
compared to the runs without structural information. For ferrites, the runs with structural information are a bit 
better as well. Furthermore, the training error with structural features is higher than the training error without 
structural features for all groups of the 3DSCICSD and for the bigger groups in the 3DSCMP. This indicates that the 
structurally aware features are better for generalizing to unseen materials.

What is more interesting is the fact that some of the experiments with structural information have a worse 
test error than the runs without structural information, in particular for the carbon-based materials and the 
oxides. We suspect that one reason for this behavior is the way the 3DSC is created, i.e. by matching chemical 
formulas of materials with the corresponding chemical formulas of crystal structures. One can imagine that 
such an approach fails for groups such as carbon-based materials, where the normalized chemical formula can 
look quite similar for very different 3D structures. Technically, it would be most useful for exactly these groups 
to have the correct structural information. Yet, the way the matching algorithm works, it is also likely to simply 
match very wrong structures. Another reason might be that at a given dataset size, adding additional features 
(8000 DSOAP features compared to 145 MAGPIE features) might actually increase overfitting and potentially 
decrease test set performance. The benefits of additional features will only become statistically significant once a 
certain training set size is reached (due to steeper learning curves)40. Such an overfitting effect can be observed 
for the smaller groups of the 3DSCMP (carbon-based materials, Chevrel phases, and oxides) where the training 
error decreases when adding structurally aware features while the test error increases.

For the cuprates, the situation is different: The chemical formula of the structure determines the structure 
quite well, so the matched structures are likely to be close to the real structures. This might be the reason why the  
prediction of the Tc of cuprates works out better with MAGPIE + DSOAP features than only with MAGPIE features.

Overall different groups of superconductors are influenced differently by adding the structural features, even 
though no clear conclusions can be drawn due to the small dataset sizes. One potential limitation that one 
should keep in mind is the fact that the matching algorithm might fail just for the groups which would most 
strongly benefit from structural information, emphasizing again the importance of reporting crystal structures 
and additional data in a machine-readable and FAIR way.

Group 3DSCICSD 3DSCMP

Others 4068 3525

Cuprates 3189 874

Ferrites 936 517

Heavy fermions 402 418

Oxides 384 310

Chevrel phases 103 74

Carbon-based 46 30

Table 3. The number of different materials in the 3DSCICSD and the 3DSCMP for each group of superconductors.
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Sensitivity analysis. We have performed experiments to investigate the influence of two important param-
eters in the matching algorithm, the Δtotrel

max  and the normalization of the chemical formulas before matching. The 
plots and a more detailed discussion of these experiments can be found in the Supplementary Information S2.2 
for the normalization of the chemical formulas and in the Supplementary Information S2.3 for the Δtotrel

max . The 
final totrel

maxΔ  used above was chosen to maximize the number of matched materials while minimizing the bias 
introduced by artificial doping. Our results furthermore show that normalizing the chemical formula before 
matching and artificial doping is beneficial, indicating that many entries in the SuperCon database do not reflect 
the exact unit cell. Additionally, we implemented a stricter version of the artificial doping algorithm, where only 
one single 3DSCICSD crystal structure is selected for each superconductor, rather than all matching structures. 
Details can be found in the Supplementary Information S2.4. We found that the mean performance becomes 
slightly worse, but the shift was not statistically significant.

Limitations and perspective. The main limitation of the matching algorithm and the 3DSC is that there 
is no guarantee that a matched crystal structure is the correct superconducting structure for this material. This is 
particularly obvious for the 3DSCICSD where there can be up to 9 different space groups for the same SuperCon 
entry. The 3DSCICSD tries to mitigate this problem by ‘diluting’ uninteresting structures with more interesting 
structures. The 3DSCMP tries to counter this problem by using the more stable structures identified by the energy 
above hull. Ultimately, this problem can only be solved by manually choosing the correct superconducting struc-
ture based on expert knowledge or measuring the crystal structure at temperatures close to Tc in order to find the 
correct crystal phase.

Until the ranking procedure, the matching and adaptation algorithm is very general and tries to keep as much 
information as possible. Only the step of selecting which structures are most likely to be the superconducting ones 
is based on empirical assumptions and thus introduces bias and potentially noise. We, therefore, expect further 
improvements by adjusting the sorting criteria for ranking crystal structures. Two possible additional sorting 
criteria are the crystal temperature reported in the ICSD database, and space groups reported for some of the 
SuperCon entries. The idea behind sorting according to crystal temperature is that structures measured at lower 
temperatures are more likely to be the superconducting structure. However, this approach might lead to an artifi-
cially introduced correlation between Tc and Tcry. Therefore we decided to not include this criterion in our work. 
The most likely space group for each material can be identified either by checking the sparse structural informa-
tion in the original SuperCon database or by checking ICSD structures for keywords regarding superconductivity 
in the paper titles or abstracts. However, this approach only covers a small fraction of materials.

So far, the 3DSC focuses on adding structural information. A promising addition would be to add elec-
tronic information, e.g. from the Materials Project into the 3DSCMP. Examples include the electronic structure, 
the band gap, the total energy and the formation energy. However, the equivalent of artificial doping for these 

Fig. 7 The results of training and testing separately for each superconductor group. For comparison, we show 
the results with XGB models trained only on MAGPIE features and trained on MAGPIE + DSOAP features. 
Shown are the mean and standard error of the MSLEs obtained in 5-fold cross-validation grouped by chemical 
system. The first row shows the performance on the test set for the 3DSCICSD (a) and the 3DSCMP (b). The 
second row shows the performance on the train set for the 3DSCICSD (c) and the 3DSCMP (d).
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electronic features would at least require additional quantum chemical calculations, if possible at all (e.g. for 
materials with small doping concentrations).

In this work, we have refrained from merging the 3DSCMP and the 3DSCICSD, since already 93% of the mate-
rials in the 3DSCMP are in the 3DSCICSD and the resulting database could have not been published freely. For 
future work, it might be interesting to expand the 3DSCMP using other publicly available datasets such as the 
Crystallography Open Database28 (COD) or the Automatic FLOW for Materials Discovery41 (AFLOW) database 
to maximize the number of materials in the 3DSC.

Overall, our work demonstrates the added value of having access to FAIR and machine-readable data on 
superconducting materials in publicly available databases. We hope that this motivates the scientific community 
working on superconductivity to publish their research data in public databases, including structural informa-
tion as well as additional meta-data.

Usage Notes
We provide the full code used for the dataset generation and the analysis in this paper. In order to simplify repro-
duction and further work on the 3DSCMP, we provide a single python script to generate the 3DSCMP, plot most of 
the statistical plots and generate the learning curves. Note that due to memory constraints, the raw 3DSCMP file 
on GitHub is missing the DSOAP and MAGPIE features which we used for the machine learning experiments 
in this paper (see Sec. ‘Machine learning results’). Re-running the matching and adaptation algorithm will also 
include these feature vectors. Future efforts in training machine learning models on the 3DSCMP can be based 
on the provided datasets, in particular the readily-available 3DSCMP. Future efforts on improving the 3DSC can 
be based on the provided code.

Code availability
Code and data are available free of charge. The code is provided in our Github repository https://
github.com/aimat-lab/3DSC. For reproducibility, the SHA of the final commit for this publication is 
2471dd51a298a854cb4f365ebd39e72c7cbf3634. The data is available on figshare30.
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