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ABSTRACT: Room-temperature ferromagnets are high-value Input Output
targets for discovery given the ease by which they could be Chemical Compositions 1400 Pammagnetic
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materials by discerning patterns within materials databases. This 16 °
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study emphasizes the importance of feature analysis and selection X% in MinCoron

in ML modeling and demonstrates the efficacy of our gradient-

boosted statistical feature-selection workflow for training predictive models. The models are fine-tuned through Bayesian
optimization, using features derived solely from the chemical compositions of the materials data, before the model predictions are
evaluated against literature values. We have collated ca. 35,000 T, values and the performance of our workflow is benchmarked
against state-of-the-art algorithms, the results of which demonstrate that our methodology is superior to the majority of alternative
methods. In a 10-fold cross-validation, our regression model realized an R* of (0.92 + 0.01), an MAE of (40.8 + 1.9) K, and an
RMSE of (80.0 + 5.0) K. We demonstrate the utility of our ML model through case studies that forecast T, values for rare-earth
intermetallic compounds and generate magnetic phase diagrams for various chemical systems. These case studies highlight the
importance of a systematic approach to feature analysis and selection in enhancing both the predictive capability and interpretability
of ML models, while being devoid of potential human bias. They demonstrate the advantages of such an approach over a mere
reliance on algorithmic complexity and a black-box treatment in ML-based modeling within the domain of computational materials
science.

1. INTRODUCTION Moreover, a magnetic material experiences a loss of
Magnetic materials have played a pivotal role in driving collective r?agnet1c' order' at a certalr'l'temperature. Fc?r
ferromagnetic materials, this phase-transition temperature is

remarkable technological advancements, most notably in the ) i :
realm of data storage, where their intrinsic physical properties known as the Curie temperature (T.). Their ordered magnetic
properties cease at T, or above, where only paramagnetic

have been exploited in conjunction with semiconductor ¢ ) 4

technology. This has fundamentally transformed methods effects are observed; these have limited utility. Therefore,
that are employed to encode and retain data bits, resulting in a
technological paradigm shift, an accompanying proliferation of
consumer applications in data storage, and the emergence of
spin electronics as a novel research field."' ™

materials with a high T, values are sought after to attain
thermally stable magnetic states or magnetization for func-
tional applications. To this end, ferromagnetic materials whose
T, value is significantly greater than room temperature are

These advances have stimulated efforts to better understand particularly attractive. However, the multitude of potential
the underlying physics that governs the responses of magnetic
materials to various energy terms and external factors such as Received: June 1, 2024
temperature.1’6 Such responses engender intricate structure— Revised:  July 20, 2024
property relationships in magnetic materials. These are Accepted: July 25, 2024

characterized by the interactions between magnetic spins, or Published: August 7, 2024

moments, which are themselves contingent upon both the
crystal geometry and chemical composition of the materials.
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interactions among magnetic ions and their surrounding
environments renders the prediction of magnetic behavior
and properties challenging.

The exploration of magnetic materials has primarily been
steered by experimental research efforts that rely on trial-and-
error methods. Such research is very time-intensive, incurs
significant operational costs and necessitates a substantial and
sustained level of specialist human capital since a rich amount
of domain knowledge is critical to research progress.
Therefore, the realm of magnetic materials discovery stands
to gain from data-driven methodologies that facilitate the
targeted design of novel materials based on a desired property,
particularly through the application of machine learning (ML).

The accessibility of large volumes of chemical data, coupled
with the rise of big-data initiatives, have resulted in a growing
interest in data-driven materials discovery. The proficiency of
data science in processing and analyzing large-scale, high-
dimensional data sets can realize a design-to-device pipeline for
materials discovery at a pace unattainable by conventional
experimental processes. Data-driven approaches leverage
materials informatics and ML.”® A typical materials-infor-
matics workflow involves transforming chemical data into a
machine-readable format using feature descriptors.”'" The
generated features are subsequently used for model training,
which facilitates the statistical prediction of: (i) properties of
unseen chemical materials via a regression analysis or (ii) the
specific class or category to which materials are associated
using a classification algorithm. The rationale is to empower
ML models to deduce relationships between chemical
compositions, material structures and their properties, which
exceed the capability of manual analysis. These techniques
have already demonstrated their prowess in accurately
predicting chemical structures and properties for a variety of
materials applications.”’ > This includes the use of multi-
fidelity modeling strategies that harness high-throughput
computational calculations and experimental measurements
in tandem."”'® These examples showcase the effectiveness of
materials screening for the realization of novel materials within
highly complex feature spaces.

Various ML techniques have been employed in order to
predict T, values for a range of ferromagnetic material
applications. For instance, Court et al.'” identified magneto-
caloric effects in 2,448 chemical compounds from the Heusler
alloy family, whose T, values were mined from the scientific
literature using the natural-language-processing toolkit, Chem-
DataExtractor.”””" They trained a gradient-boosting regression
model using the XGBoost python library”* with 38 element-
level features and the magnetic field features, realizing a
coefficient of determination (R*) of 0.71 and a mean absolute
error (MAE) of 59.8 K. This model was leveraged by Ucar et
al.”” in their study of magnetic entropy prediction.

Long et al.”* conducted a study aimed at advancing the
design of ferromagnetic materials using ML techniques. They
employed random-forest algorithms for classifying materials as
ferromagnetic or antiferromagnetic based on their magnetic
ground states and for predicting the T value of ferromagnets.
The study realized a classification accuracy of 87% and an R* of
91% for the regression task. Their random-forest algorithm was
trained on a data set of 1749 ferromagnetic intermetallic
compounds, intentionally excluding oxides and compounds
that lack Cr, Mn, Fe, Co, and Ni atoms. Additionally, the
analysis incorporated 139 chemical and 26 structural descriptor
features for each compound.
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Dam et al.* performed a regression-based feature-selection
process to analyze and predict T, in binary alloy compounds
composed of 3d transition metals and 4f rare-earth elements,
using ML techniques. They found that model accuracy was
optimized when the first 5 to 10 descriptor features were used,
with the concentration of the rare-earth element being the
most salient among the 28 descriptors utilized. The study
reported an R? of 0.96 and an MAE of 41 K, using a limited
data set comprised of 108 experimental data. Additionally, they
noted a gradual decrease in model performance with the
incorporation of additional descriptors, aligning with expect-
ations.

Notably, Nelson et al.”® conducted a ML-driven study that
predicted T, values of ferromagnetic materials solely from their
chemical composition. They trained a random-forest regres-
sion model using features based on their chemical
compositions with ca. 2,500 chemical compounds. Their final
model was trained using 129 features and achieved an R* of
0.87 and an MAE of 57 K on the test set, while a cross-
validation R* of 0.81 was realized. A similar study was carried
out by Belot et al.”’ in an attempt to predict T, values using a
larger data set of ferromagnetic materials, while examining a
diverse range of methods for material representation. They
trained and validated a random-forest model and a k-nearest
neighbors algorithm using two sets of data, first with ca. 2,500
and second with ca. 3,000 chemical compounds. They reported
that the random-forest model realized the highest accuracy
using 85 features based on chemical composition, and the use
of complex descriptors and dimensionality reduction did not
improve the prediction results. In 3-fold cross-validation, an
MAE of 73 K with a standard deviation of 3.2 K was achieved
using the first data set, while an MAE of 71 K with a standard
deviation of 2.3 K was achieved on the combined data sets.
Another study using a random-forest regression was conducted
by Singh et al.,”® which attained a 5-fold cross-validation R* of
0.91 with a root-mean-square error (RMSE) of 59 K.
Nevertheless, this study used a relatively small data set of
220 ferromagnetic and ferrimagnetic compounds to analyze
rare-earth-based materials. Moreover, a linear regression was
used by Sanvito et al.”’ in order to accelerate the discovery of
new ferromagnets in the Heusler alloy family. The regression
was calibrated on experimental measurements of ca. 60
chemical compounds. A typical error value in the prediction
of T, values was reported to be in the range of 50 K for two
chemical classes of the form Co,YZ and X,MnZ.

This study presents a new way to predict T, values, to help
researchers deliver more accurate and transparent data-driven
designs of ferromagnetic materials through a systematic
integration of feature engineering, analyses, selection, and
optimization processes.15 Our proposed workflow, referred to
as gradient-boosted statistical feature selection (GBFS)
hereafter, integrates a distributed gradient boosting framework,
in conjunction with exploratory data and statistical analyses
and multicollinearity treatments, to discern a subset of features
that is highly relevant to the target variable or class within a
complex feature space; this affords minimal feature redundancy
and maximal relevance to the target variable or classes.

Our workflow is generalizable, as has already been
demonstrated through its use in successfully predicting
material-property relationships in other areas of scientific
research using data from DFT calculations'® and experimental
measurements.' "' Here, we apply the GBFS workflow to

predict T, values of ferromagnetic materials using literature
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Figure 1. Periodic table highlighting the compositional space represented by both Data sets 1 and 2 that are used in this work.

values as training data that emanate predominately from
experimental measurements. The performance of our models is
compared to state-of-the-art ML approaches that predict T,
values. In order to impose a stringent standard on our
modeling approach and to ensure a direct comparison with
state-of-the-art results, we restrict our descriptor sets
exclusively to those derived from chemical compositions,
abstaining from complex feature descriptors. This decision
recognizes that experimental T, values reported in the
literature often lack comprehensive crystallographic informa-
tion, while chemical compositions are readily available.

We herein collate a database comprising ca. 35,000 T, values
from the scientific literature. This database is divided into two
segments. The first segment (Data set 1) includes T, values
sourced from a variety of publications,”" > predominantly
being experimental values reported by Nelson et al.*® and Belot
et al.”” Data set 1 serves as the foundation for conducting a
regression analysis of T values, showcasing the effectiveness of
our GBFS workflow within this domain. Moreover, it facilitates
an equitable comparison of our modeling approach with state-
of-the-art models developed using a comparable data set. We
broaden our analysis to the second data set (Data set 2) by
incorporating T, values from AtomWork’ into a blind-test
scenario, exploring potential applications of our ML models
beyond a conventional benchmarking evaluation against the
state-of-the-art models. By ensuring that there is no overlap of
chemical composition with Data set 1, we will show that the
blind-test prediction notably identifies 90 chemical composi-
tions that exhibit T, values which exceed room temperature, a
finding that is subsequently corroborated by experimental
measurements reported in the scientific literature. Figure 1
depicts the periodic table, highlighting the compositional space
covered by these data sets, which exhibit identical chemical
coverage.

Furthermore, this study demonstrates the utility of our ML
models through two primary applications: (i) the prediction of
T. values for rare-earth intermetallic compounds and (ii) the
generation of magnetic phase diagrams of various chemical
compounds, where we assess how well our ML models perform
when given the task to make out-of-distribution predictions.
We emphasis that there exists no overlaps between the
previously aforementioned data sets. Our choice of evaluation
data sets ensures that each of our ML modeling analyses
maintains its distinctiveness, and our results are juxtaposed
with corresponding studies utilizing identical or similar data
sets for comparative purposes.
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Overall, we will show that our GBFS approach highlights the
importance of thorough feature analysis and judicious selection
over merely complex modeling. Thereby, we will notion that a
common off-the-shelf model trained on features selected and
engineered by the GBFS workflow can yield results that are
comparable or superior to those reported in the literature. The
workflow additionally provides insights into feature inter-
actions and their relevance to the target variable. The collated
database of T, values and their corresponding chemical
compositions is made available (https://github.com/
Songyosk/CurieML) to serve as a resource for researchers
engaged in the design of ferromagnetic materials.

2. METHODS

2.1. Featurizers. A high-dimensional feature vector was
constructed using a set of composition-based descriptors, while
incorporating the composition featurizer modules from
Matminer’® and Pymatgen.’” Additional features were
generated by computing statistics over elemental attributes
that are specific to each chemical composition. These
calculations draw from various data sources, including
Magpie,40 Pymatgen,39 Deml*" and neural-network embed-
dings of elements that have been created using the Materials
Graph Network (MEGNet).*”

In the field of materials informatics, these tools are
instrumental for providing a range of composition-based
features that are essential for analyzing and predicting material
properties. Matminer, developed by researchers at Lawrence
Berkeley National Laboratory, is a comprehensive Python
library designed for materials analysis. It provides an array of
composition-based features derived from elemental properties,
including atomic radius, electronegativity, and ionization
energy. Matminer enables the computation of various statistical
measures related to these properties across constituent
chemical elements. Moreover, it offers features related to the
ionic character of material bonds, the oxidation states of
elements, and electronic structure attributes such as the
valence electron configuration of the elements.

Magpie (Materials-Agnostic Platform for Informatics and
Exploration) is engineered to generate a diverse array of
features from chemical compositions, optimizing their use in
ML models. The platform offers a wide range of features
derived from elemental properties, encompassing both physical
properties—such as density, heat capacity, and thermal
expansion—and electronic properties—including electronega-
tivity, valence electron concentration, and electron afhinity.

https://doi.org/10.1021/acs.jcim.4c00947
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Figure 2. Overview of our operational workflow. Adapted with permission from ref 15. Copyright 2023 the authors. Published by AIP Publishing

under a Creative Commons CC BY License.

Magpie computes statistical measures of these properties for
the constituent chemical elements.

Pymatgen (Python Materials Genomics) is a materials
analysis library, offering an extensive suite of tools, designed to
manage and analyze materials data. In addition to its utility on
structural data, Pymatgen also supports the extraction of
valuable composition-based features, and it is integrated with
the Materials Project databases.*”** The features generated by
Pymatgen include the elemental fraction and atomic fraction of
elements within the material, as well as comprehensive
statistics on the physical and chemical properties of the
constituent elements. These properties encompass melting
points, boiling points, thermal conductivity, ionization
energies, and other relevant parameters, providing a rich data
set for materials characterization and predictive modeling,

In essence, these packages enable the computation of four
distinct types of attributes or measures. The first type is
stoichiometric attributes, which rely solely on the proportions
of elements present within a chemical compound. This
category encompasses the number of elements in the
compound and various Lf norms of these proportions or
fractions. The second type involves elemental property
statistics, including the maximum, minimum, mean, range,
mode and mean absolute deviation of various elemental
properties. In other words, these statistical measures are
calculated by considering the properties of each individual
element within a composition. This includes attributes such as
the average atomic number, the highest group number on the
periodic table, and the standard deviation of Mendeleev
numbers among elements in a chemical composition. The
third type is electronic structure attributes, which calculate the
average fraction of electrons from the s, p, d, and f valence
shells across constituent elements. The fourth type pertains to
ionic compound attributes, assessing the potential to form an
ionic compound by assuming constituent chemical elements
are in a single oxidation state. It also includes measures of the
ionic characteristics of a compound based on electronegativity.

MEGNet, an acronym for MatErials Graph Network,
represents a graph neural network model tailored for materials
science applications. It uses a graph-based framework to extract
material properties from the structural configurations of
molecules and crystals. MEGNet models, once trained, can
function effectively as feature extractors for new materials,
where the embeddings they generate are used as input features
for subsequent predictive models. These embeddings effec-
tively capture the chemical periodicity and inherent trends
observable within the periodic table. While the individual
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interpretation of these embeddings can pose challenges, their
utility is well-documented, particularly in transfer learning
applications. For instance, embeddings derived from a model
trained on a comprehensive data set can enhance the predictive
capabilities of other models that are trained on more
constrained or limited data sets. In our study, we employed
MEGNet embeddings to augment elemental characterization,
facilitating the application of transfer learning from pretrained
models to improve the prediction of T, values.

2.2, Gradient-Boosted Statistical Feature Selection
Workflow. Figure 2 depicts our overarching GBFS workflow
that we applied to predict T, values solely from chemical
composition. Full details of this methodology have been
described previously by Jung et al.'” The method as applied to
this specific T, prediction challenge is provided herein.

The GBFS workflow integrates several key components: (i)
a gradient boosting framework to identify a subset of features
that maximize relevance to the target variable or class; (ii)
statistical analyses of exploratory features to identify those that
are statistically significant to the target variable or class; (iii) a
feature engineering step for generating additional features; (iv)
a two-step multicollinearity reduction process involving
correlation and hierarchical cluster analyses to minimize
feature redundancy; (v) a recursive feature-elimination
process; and (vi) Bayesian optimization to determine the
architecture of the final predictive ML model.

While a comprehensive description of each component of
our GBFS workflow has been given by Jung et al,"> we
herewith provide a summary of its key attributes to ensure
clarity and delineate how our approach differs from the
aforementioned studies. Our modeling approach offers
significant advantages by being highly systematic and
minimizing human intervention during both the feature
selection and model development phases. Initially, a
comprehensive list of approximately 800 exploratory features
is compiled, followed by the computation of the loss reduction
attributed to each feature. Concurrently, a suite of statistical
tests and analyses based on probability theory and information
theory are conducted. These two independent stages effectively
identify the most relevant features for the target variable; in
this case, the values of T.. These salient features are then used
to generate additional features. A default method employed is a
brute force approach, which requires no domain knowledge,
although one can opt for manual intervention at this stage to
guide feature engineering. The most relevant and statistically
significant features, along with the newly engineered features,
are then evaluated for multicollinearity.

https://doi.org/10.1021/acs.jcim.4c00947
J. Chem. Inf. Model. 2024, 64, 6388—6409
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The initial step in addressing multicollinearity involves
eliminating highly correlated features based on a predefined
correlation threshold. This is followed by hierarchical
clustering analysis to group similar features. A linkage
threshold is set, allowing the algorithm to automatically select
one feature from each cluster to represent that cluster. The
underlying rationale is that similar information can be derived
from a single representative feature within a given cluster
group, thereby streamlining the feature space without loss of
critical information. Subsequently, recursive feature elimination
is performed, where a greedy-based search method prunes
features in a recursive manner until the desired number of
features is reached, or no model deterioration is observed. At
this stage, permutation importance analysis is also carried out,
which involves randomly shuffling the values of a single feature
to observe the impact on performance metrics.

This meticulous process leads to a refined subset of features
that are used to perform Bayesian optimization. In this study,
for instance, 36 features were systematically selected from an
initial set of approximately 800 features. The optimization
stage autonomously identifies the most effective model
architecture using solely the training set, without the need
for human intervention throughout the process. Once the final
predictive model has been optimized, it is evaluated using the
test set—marking the first and only time that this data set is
used. This rigorous approach ensures that our model is both
robust and effective, leveraging systematic methodologies to
enhance predictive accuracy and reliability, while eliminating
potential human bias.

This comprehensive strategy ensures that the selected
features contribute optimally to the predictive accuracy of
our model, while effectively minimizing the effects of high
correlations and redundancy among the input features. By
significantly reducing the complexity of the feature space, this
approach enables one to address potential overfitting issues
and inherently performs regularization to achieve model
generalization. This underscores the advanced and reliable
nature of our highly systematic analytical approach. In the
following sections, we present the results that are associated
with each component of the GBFS workflow.

For the regression analysis, we computed the mean absolute
error (MAE), the mean squared error (MSE) and the
coefficient of determination that is defined as the square of
the Pearson correlation coefficient, R, according to

1 < -
MSE:NE(%—);) "
MAE = ii ly — 7l
NZ© T (2)
R = Covar(x, y)
 Var(x)Var(y) (3)

where y and y are the true and predicted values, respectively,
N V-7

over a number of samples, N; Covar(x, y) = M is
Zl\i (xi_’?)z

the covariance between x and y; Var(x) = ==——— and

Var(y) =

_ _ 1L yN — _ 1L yN
and ¥ = N 2 Xandy = N Zi=1); are the mean of x and y,

are the variance of x and y, respectively;

Zf\:]l(yx _}_’)2
N
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respectively. The range of R is [—1, 1] and its value indicates
the extent by which a quantity has a linear tendency to change
as the values of another are varied.

3. RESULTS AND DISCUSSION

3.1. Regression Analysis of Curie Temperatures.
3.1.1. Overall Performance Evaluation. We present the
results of the regression analysis of T, values that employed
Data set 1, which encompasses ca. 11,000 chemical
compounds, among which ca. 7,200 represent distinct chemical
compositions. The data set was segmented according to a
train-to-test split ratio of 4:1 through random splitting. For
duplicate chemical compositions, the median values of T, were
calculated. The decision to adopt the median as the measure of
central tendency was motivated by its reduced susceptibility to
outliers relative to the mean. The regression was performed by
a Bayesian-optimized gradient boosting algorithm using 36
features, which were derived exclusively from their chemical
compositions. The selection of these features was made from a
pool of more than 800 total features through our GBEFS
workflow.

Figure 3 shows the resulting model performance and error
distribution on the test set. The blue dot-dash line represents
the line of best fit, established through the Ordinary Least
Squares (OLS) method; it depicts the relationship between T,
values reported in the literature and our ML-based predictions.
Two distinct regression analyses were conducted: the first
without the inclusion of MEGNet embeddings (as shown in
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Figure 3. Test set results of the ML-based predictions of T, against
the ground truth for the regression model that has been trained and
Bayesian-optimized on the final subset of features selected by our
GBFS workflow, where (a) excludes and (c) includes the MEGNet
embeddings. The dashed red line is drawn to represent the
hypothetical case, where our ML-based predictions would equal the
literature values (ground truth). The blue dot-dash line is a linear fit
generated using the OLS method. (b) and (d) show the
corresponding distribution of absolute errors for (a) and (c),
respectively, where the dashed line (—) in red indicates the MAE
and the dashed line (——) in orange indicates the RMSE.
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Figure 4. Distribution of Curie temperature (T,) values in (a) the training set and (b) the test set, sourced from Data set 1.
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Figure 5. Evaluation of MAE, RMSE, and R* conducted by training our ML model on increasingly larger subsets of the original training set, where

the data were randomly sampled.

Figure 3 (a)) and the second incorporating these embeddings
(depicted in Figure 3 (c)). This methodological differentiation
arises from the challenges associated with interpreting the
physical contributions of the embeddings to the ultimate
predictions. Consequently, this strategy enables a comparative
examination of how feature
prediction of T, values.

In Figure 3 (a), the linear fit exhibits a gradient of 0.9 and a
y-intercept of 21.1 K, rounded to one decimal place. The y-
intercept suggests a minor systematic bias for lower values of
T, while the gradient demonstrates a nearly perfect alignment
of our predictions to the literature data, with a small
underestimation at large temperatures within the range
considered herein. The high efficacy of this linear fit is
corroborated by an R? value of 0.93, which signifies a high
correlation between predictions and the ground truth.
Moreover, MAE and RMSE values of 38.8 and 72.2 K were
realized, respectively. The higher RMSE is attributable to the
increased penalization of predictions that deviate significantly
from their true values. The distribution of absolute errors is
depicted in Figure 3 (b). A 10-fold cross-validation process was
undertaken, affording an R* of (0.92 + 0.01), an MAE of (40.8
+ 1.9) K, and an RMSE of (80.0 = 5.0) K. Observations
indicate comparable performance upon integrating MEGNet
embeddings, as illustrated in Figure 3 (c) and the
corresponding error distribution in (d). This underscores
their effectiveness in facilitating transfer learning.

interactions influence the
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Notably, our modeling results outperformed the state-of-the-
art report by Nelson et al.* (test set R of 0.87 and MAE of 57
K with 129 features and a cross-validation R*> of 0.81) and
Belot et al.”” (a cross-validation MAE of 71 K with a standard
deviation of 2.3 K with 85 features). These observations can be
attributed to two primary factors. First, our study involved the
aggregation and analysis of an extensive data set, constituting
the largest compilation of T, data available in the literature.
The substantial size of our data set enhances our capacity to
discern statistically significant relationships between explor-
atory features and the target variable. Second, our implemen-
tation of the GBFS workflow allowed us to minimize feature
redundancy and maximize feature relevance to the target
variable. The efficiency of our modeling strategy enabled us to
surpass the performance of other studies by employing a
significantly lower number of input features, and notably,
without resorting to the use of regularization techniques during
model optimization. The results on both the test set and the
cross-validation process further affirm the generalizability of
our model, without overfitting to the training set.

Our model performs with particularly high efficacy where T,
< 500, which stands to reason given the predominant
concentration of data within this temperature range. However,
the number of data points diminishes rapidly, with increasing
temperature, with the highest T of 1,388 K being recorded for
the elemental metal, cobalt. This diminishing data density at
higher temperatures contributes to the observed discrepancies
between the ML predictions and the ground truth in this
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temperature range, as depicted by the lines of best fit (blue) in
Figures 3 (a) and (c), which sit below the diagonal lines in red.
The population distribution plots for both the training and test
sets are illustrated in Figure 4. Nevertheless, our ML modeling
approach has exhibited precise predictions of T, despite the
absence of any 3-D structural information. Moreover, our
approach does not involve specific treatments to accommodate
different crystal forms of the same chemical compound, a
phenomenon known as polymorphism. Instead, it relies on
capturing the median values of T, for each chemical
composition. Our approach strictly trains the model to be
agnostic to crystalline polymorphs. Turning our attention back
to the error distribution plots in Figures 3 (b) and (d), which
have a logarithmic scale on the y-axis, it is evident that the
majority of the predictions exhibit errors below ca. 60 K. Upon
closer inspection of the chemical compositions in the test set,
ca. 82% have an absolute error below 60 K, ca. 65% have an
absolute error below 30 K, and ca. 32% have an absolute error
below 10 K.

We recognize the importance of assessing how model
performance varies with data set size. This evaluation helps to
ascertain whether the expanded data set used in this study
offers any benefit to the prediction accuracy or if the benefits
have plateaued which would indicate no significant advantage
in using such a data set. Our analysis evaluated the MAE,
RMSE, and R* values for increasingly larger subsets of the
original training set, where the data were randomly sampled.
The results shown in Figure S reveal a continuous improve-
ment as the training set size increases, yet without a definitive
convergence in these metrics. Therefore, the data set curated
for this study not only enhances model performance but it may
also hold potential to offer valuable insights to the wider
research community.

It is also essential to clarify that our modeling rationale does
not overlook the significant impact that structural information
can have in enhancing the prediction accuracy. Indeed, the
integration of such data would undoubtedly improve our ML
model by introducing additional variables that are critical to
the predictive outcomes. This is because understanding the
arrangement of atoms within a crystal lattice provides insights
into the interactions of magnetic moments. For example, body-
centered cubic structures, such as those observed in a-iron or
ferrite, facilitate specific types of magnetic interactions that are
conducive to higher Curie temperatures. Nevertheless, our
decision to restrict the feature space exclusively to variables
derived from chemical compositions is grounded in two key
considerations. First, there is a substantial scarcity of accessible
3-D crystallographic information and it is cost-prohibitive to
aggregate such information, which impedes the inclusion of
structural data. Second, constraining the feature set in this
manner streamlines the predictive modeling process. The
inclusion of structural information would necessitate the
exclusion of a substantial portion of the data used in this
study due to its unavailability. Additionally, should future
predictions be made, the featurization stage, which involves
generating structural features, would be constrained by the
limited availability of necessary crystallographic data, thereby
limiting the practical utility of the ML model.

3.1.2. Feature Interpretation. Table 1 summarizes some of
the top 10 salient features that contributed to the
aforementioned outcomes in our regression analysis. We now
seek to rationalize their significant role. The most influential
feature, as denoted by the realized total loss reduction, pertains
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Table 1. A List of Features Identified to Have the Most
Relevance in the Prediction of T, Values

No. Feature Description

1 Ground-state magnetic moment of elemental solids for atoms within
a given chemical composition

Presence of cobalt

3 Number of valence electrons in the d-orbitals of elements within
a given chemical composition

4 Volume of elemental solids for atoms within a given chemical
composition

S Periodic table column number

6 Electronegativity

Number of unfilled electrons in the d-orbitals of the elements within
a given chemical composition

8 HOMO and LUMO energies and their associated chemical elements
9 Presence of manganese
10  MEGNet embeddings

to the mean ground-state magnetic moment of elemental solids
for atoms within the chemical composition. This feature is
categorized under elemental property statistics, as detailed in
Section 2.1. The second most influential feature is the presence
of cobalt in the chemical composition. Additional features
exhibiting significant relevance with the target variable
encompass a range of statistical measures pertaining to the
number of d-valence electrons or vacant d-valence orbitals, the
volume of the elemental solid, the periodic table’s group
number, electronegativity, instances where the element with
the lowest energy molecular orbital (LUMO) is iron, the
inclusion of manganese within the composition, the coeflicient
of linear thermal expansion, thermal conductivity, atomic
radius, and the energy of the highest occupied molecular
orbital (HOMO).

The feature selected with the highest relevance was the
mean ground-state magnetic moment of elemental solids for
atoms within the chemical composition; this was anticipated,
considering its direct material association with the measure of
magnetic strength or the tendency of a magnetic moment to
align with a magnetic field. The selection of the ground-state
magnetic moment as a key feature, while seemingly intuitive, is
substantiated by both theoretical and empirical rationales. The
ground-state magnetic moment is a fundamental property that
defines the magnetic behavior of a material at absolute zero,
where the material is in its lowest energy state. Specifically, it
quantifies the total magnetic dipole moment in the most stable
configuration of the material. This quantification reflects the
nature and intensity of the magnetic spins within the material,
which are crucial for determining its ferromagnetic character-
istics. Thus, the mean ground-state magnetic moment feature
is directly linked to T, as it embodies the strength of the
magnetic interactions within the material. A higher magnetic
moment typically indicates stronger magnetic interactions,
which are pivotal because they dictate the temperature at
which thermal energy disrupts the magnetic ordering, thereby
influencing T..

Furthermore, the magnitude and presence of the ground-
state magnetic moment act as markers of ferromagnetic
properties. Ferromagnetic materials, distinguished by a non-
zero ground-state magnetic moment, manifest spontaneous
magnetic order below T, due to the alignment of magnetic
moments. Therefore, quantifying these moments offers a direct
measure of the extent and nature of ferromagnetism in the
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material, positioning the mean ground-state magnetic moment
as a critical metric for T..

Empirical research consistently demonstrates a correlation
between T, and the nature and strength of magnetic
interactions, as encapsulated by the magnetic moment. This
relationship is exploited in predictive modeling, wherein the
ground-state magnetic moment serves as a foundational
component for estimating T, For instance, an empirical
study conducted by Fecher et al.*> has observed that T, values
of Co,-based Heusler compounds display a discernible linear
correlation with the magnetic moment. Fecher et al.
extrapolated such a linear pattern to ascertain that T, can
surpass 1,000 K in Co,-based Heusler compounds charac-
terized by a magnetic moment of 6 y and 30 valence electrons
per unit cell (e.g, Co,FeSi). This observation additionally
underscores the dependence of T, on both the number of
valence electrons and the presence of elemental cobalt in the
chemical composition (cf. the second and third-ranked
selected features). More broadly, the relevance of such a
feature generally applies to alloys that adhere to the Slater-
Pauling curve.”*” It is a well-established fact that the
magnetization of 3d transition metal substitutional alloys, as
a function of the valence electron number per atom, forms the
Slater-Pauling curve. Similarly, T, values of these alloys display
a systematic pattern relative to the number of valence
electrons, a phenomenon that has also been substantiated
through first-principles calculations.”® Therefore, it is evident
that the magnetic moment is correlated with the Slater-Pauling
curve, which is discussed in more detail later in this section.

The prominence of cobalt-based attributes as the second
most salient feature in predicting T, aligns with expectations.
As previously mentioned, cobalt as an elemental metal exhibits
the highest recorded T, of 1,388 K. Materials with high T,
values predominantly feature cobalt within their chemical
composition. As we will see later, subsequent blind-test
analysis further reveals that the majority of chemical
compositions with T, 2 600 K include both cobalt and iron,
indicating the significance of cobalt in achieving elevated T,
values.

The third most salient type of feature is associated with d-
valence electrons or orbitals, for which a clear rationale exists.
Slater*® and Pauling®” established that the magnetic moments
of 3d elements and their binary alloys could be characterized
by the mean number of valence electrons per atom, offering a
simple explanation of the relationship between the number of
valence electrons and magnetic moment in ferromagnetic
alloys. Specifically, Co,-based Heusler compounds adhere to
the Slater-Pauling rule, which predicts that the total magnetic
moment scales linearly with the number of valence
electrons.****° Co,-based compounds are situated on the
localized part of the Slater-Pauling curve, which is indicative of
an increasing magnetic moment with an increasing number of
valence electrons.’’ It is also established that in quaternary
half-metallic ferromagnetic materials, the incorporation of a
transition metal with 4d electrons in conjunction with iron or
manganese can result in an elevation of the T, value. The
variation of T\ as a function of the number of valence electrons
can be understood through the interatomic exchange
interaction parameter.’” These findings elucidate one of
several interactions among diverse features as discerned
through the GBFS workflow. It accentuates the predictive
significance of valence electron characteristics in ascertaining
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magnetic properties, thereby underscoring the intricacy of
feature interrelations within the predictive model.

The GBFS workflow identified additional chemical
composition-based features that are also of significance. For
instance, the average deviation in the periodic table column
positions among elements within the chemical composition
demonstrates a notable correlation of ca. —0.45 with the target
variable, T.. This negative correlation indicates that materials
with smaller average deviations in the periodic table column
positions among their constituent elements tend to be
associated with higher T, values. This characteristic is prevalent
in materials comprising metals such as iron, nickel, cobalt, and
rare-earth metals. Likewise, characteristics associated with the
periodic table’s group number, atomic radius, and Mendeleev
number emerge as salient features identified by the GBEFS
workflow. These attributes are closely tied to an element’s
specific location within the periodic table, underscoring their
relevance in the predictive analysis.

Additionally, the inclusion of manganese within the chemical
composition demonstrates significant pertinence. While
elemental manganese, a metal, does not exhibit ferromagnetism
in its pure form, manganese alloys can exist in the form of a
Heusler crystal structure, wherein manganese possesses a
magnetic moment. More generally, the marked sensitivity of T
values that is observed in Mn-containing magnetic alloys is
well-documented and can be explained via the empirical
Castelliz—Kanomata curves.”>>* These curves, which have
been validated across various Heusler alloys,”>*® highlight that
the magnetic interactions in Mn depend on the structural
parameters, such as the Mn—Mn nearest neighbor distance.
Furthermore, there is substantial empirical evidence demon-
strating that pressure, and hence the volume, significantly
influences T, values. These findings suggest that the
identification of certain features in our ML model can assist
in distinguishing materials with high T values or materials that
deviate from the elementary framework of ferromagnetism.

Another noteworthy feature is the mean volume of the
elemental solid among the elements in the chemical
composition. The exchange energy (E,.) is a continuum
description of the quantum mechanical exchange interaction
and is given by

2
M
E_ = AV|— | dVv
- /v (M] 4)

where A is the material-dependent exchange stiffness, M is the
magnetization, M; is the saturation magnetization, and the
integral is over the volume of the sample.' Equation 4 shows
that the exchange energy is explicitly linked to the integral over
the volume of the sample. This provides a lucid and simple
illustration of how volume and shape may affect the exchange
energy and coupling and, consequently, influence the
prediction of a T, value.

The final category of features to be addressed involves band
gap-related attributes, such as the energies of the HOMO and
LUMO or their associated chemical elements, which
necessitates further explanation in the context of predicting
T.. For instance, the HOMO signifies the highest energy level
that contains electrons, analogous to the valence band in Band
theory, and it is directly associated with band gap energy.
There are several possible theories that could explain the
relationship between these features and T.. For example, the
influence of the band gap on T, has been extensively studied by
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1‘57 1‘58

Coey et al.”’ and Pan et al.”” In particular, the T, values of
diluted magnetic oxides (DMOs) are quantitatively explained,
based on a bound magnetic polaron mechanism, via the
equation

e 3
T = (5 + 0s%6/31 L fo| = | /ky .
0 S

where S is the localized core spin, s is the donor electron spin,
x and O are the concentrations of magnetic cations and donors,
J. is the s—d exchange parameter (which is related to band
gap), fo is the oxygen packing fraction for the oxide, r¥ is the
effective cation radius, rg is the radius for the oxide, and kj is
Bolzmann’s constant.””>* The donors form bound magnetic
polarons, leading to coupling among the 3d moments of the
ions within their orbits. When the radius of its orbital is
sufficiently large, the ferromagnetic exchange coupling is
established from overlap between a hydrogenic electron and
the cations within its orbit. This interaction is influenced by
the parameter J ;. Equation § illustrates the dependency of T,
on band gap via the J; parameter, in addition to other crucial
factors such as doping and donor concentrations. Indeed, the
results of Pan et al.’® demonstrate that one can enhance T,
values in DMO materials by manipulating their band gap. This
exemplification helps to rationalize why the average number of
unfilled d orbitals among elements in the chemical
composition is also an important feature. Furthermore, it
reinforces the identification of d-valence electrons as among
the most pertinent features for predicting T, thereby offering
additional validation for their relevance.

It is essential to acknowledge that, while the band gap-
related features have a relatively modest level of significance
compared to other features discussed in this section, their
presence is not negligible. Chemical compositions containing
oxygen account for approximately 13% of the data set that was
used to generate the results shown in Figure 3. Although they
represent a minority, these features appear to be helpful in
distinguishing between metal oxides and purely metal-based
compositions. The ability to identify specific features that
differentiate minority classes is of importance. The recognition
of such attributes enhances the model’s capability to
distinguish between different classes of chemical materials.
Moreover, the impact of these features on reducing the loss
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function during model training further supports their
relevance.

The HOMO energy also exhibits a degree of correlation
with other selected features, such as the average deviation of
electronegativity among elements in the chemical composition,
and various features derived from p-valence electrons or p-
orbitals. Such correlations are particularly pronounced for
chemical elements that belong to groups 13—18 of the periodic
table, notably within the p-block. This region of the table is
characterized by elements that possess high electronegativity
values. The pairing of a metal (characterized by low
electronegativity) with a nonmetal element leads to a large
difference in orbital energy, a phenomenon that is accentuated
as the electronegativity gap between the paired elements
widens. It is therefore not surprising that numerous ionic
compounds have been identified as being ferromagnetic,
exhibiting conductivity levels that are typical of semi-
conductors. This category of materials encompasses chalcoge-
nides, and halides, or combinations of these groups of the
periodic table. In such materials, ions like chromium and
europium contribute to the formation of permanent dipole
moments. Notably, many rare-earth metals within the
lanthanide series exhibit spontaneous magnetization below
specific temperatures. Moreover, ferromagnetic ordering is
often observed in ionic compounds that feature the spinel
crystal structure, which is typified by metal oxides with the
general composition AB,O,.

The final feature to be discussed refers to the MEGNet
element embeddings. Upon integrating the MEGNet embed-
dings, it was noted that 6 of the top 20 most salient features
were substituted by these MEGNet embeddings. These
learned element embeddings on graph-neutral-network models
encode chemical trends in the periodic table. While
interpreting individual embeddings can be challenging,
previous studies have demonstrated their utility in transfer
learning.">'”** Specifically, these embeddings can be transfer-
learned from a material-property model that has been trained
on a larger data set to enhance property models with smaller
data sets. In this study, we leveraged the acquired embeddings
to enhance the predictions of T, values for ferromagnetic
materials.

3.1.3. Gradient Boosted Feature Selection. Our GBFS
workflow selected a final subset of 36 features from over 800
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negative-RMSE as the performance metric.

exploratory features. Here, we present the results associated
with this selection process. Initially, gradient boosting decision
trees (GBDTs) were recursively trained on an increasing
subset of features until R, MAE, and RMSE converged,
whereby the features were originally ranked based on the total
loss reduction achieved during the training process. The
evolution of these performance metrics over the course of this
selection process is illustrated in Figure 6. Evaluation results
are shown for both the training set and the validation set. The
performance metrics for both sets reached a plateau before ca.
40 features had been included. A comparatively lower
performance on the out-of-sample validation set was observed,
as expected. Additionally, we noticed a sudden decline in the
model performance on the validation set beyond the inclusion
of the fifth feature, followed by a subsequent recovery in
performance. This phenomenon is not unusual, given that we
did not account for multicollinearity at this stage of the
workflow, even though it may be present among the
exploratory features. In the presence of multicollinearity
effects, the total loss reduction is distributed evenly across
correlated features, thereby masking the true relevance of
individual features to the target variable; see Section 3.1.5 for
an explicit consideration of its effects.

3.1.4. Feature Analysis and Feature Engineering. We
sought to understand the causal relationship between an
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exploratory feature and the target variable by concurrently
employing hypothesis-based testing methods of a bivariate
form. For instance, a comparison of means was conducted
using the F-test in a one-way analysis of variance (ANOVA).
This involves a correlation analysis using R for two continuous
features, where the ANOVA approach to regression analysis
involves converting R into a regression F-statistic. These
hypothesis-based testing methods were employed for statistical
inference, with the statistical significance of an exploratory
feature being inferred from the test statistics that were
generated by testing the hypotheses that pertain to the
existence of an association between two features. Additionally,
mutual information (MI) analysis was performed. The concept
of MI was employed to quantify the level of dependency
between two features, measuring the amount of information, or
entropy, gained for a feature through the observation of
another. For a pair of features, MI assesses the disparity
between their joint distribution and the product of their
marginal distributions, with a higher MI value indicating a
greater dependency between the two features. We adopted an
MI estimator based on entropy estimations that are derived
from k-nearest neighbor distances.

When assessing the linear association of each continuous
exploratory feature with the target variable through a
normalized F-statistic for relative comparison, we identified
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Figure 8. Bayesian optimization result of the final regression model using the training data, where (a) is the partial dependence plot and (b) is the
evaluation plot. The red stars indicate the values of the hyperparameters that achieved the lowest value of the objective function. The approximate
position of the objective minimum is indicated by the dashed vertical lines in red.

that the feature demonstrating the highest linear association composition (estimated using Magpie data). Following closely
with the target variable was the mean ground-state magnetic was the fraction of transition metals and the mode of magnetic
moment of elemental solids for atoms within a given chemical moment of elemental solids for atoms within a given chemical
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Figure 9. Feature relevance plot - top 20 features selected for the regression analysis of T,, where (a) is without and (b) is with MEGNet element
embeddings, along with the realized total loss reduction (i.e., the relevance score).

composition (also estimated using Magpie data), with
normalized F-statistics reaching 0.75 and 0.68, respectively.
Other features exhibited normalized F-statistics below ca. 0.6,
although these included some with notable loss reduction such
as the presence or fractional abundance of cobalt in a chemical
composition, the mean volume of elemental solids, the periodic
table column or group number of the constituent elements,
and the number of d-valence electrons.

In parallel, the MI analysis indicated that the greatest
amount of entropy gain was realized when considering the
mean ground-state magnetic moment of elemental solids for
atoms within a given chemical composition. Other notable
features with a normalized MI score above 0.8 include
statistical measures associated with the fraction of transition
metals, the periodic table column or group number of the
constituent elements, the number of d-valence electrons or
unfilled d-orbitals, electronegativity, and the Mendeleev
number. Since the MI analysis incorporates the k-nearest
neighbors method, these results essentially suggest that more
accurate predictions of T, can be achieved by considering
statistical measures that pertain to the ground-state magnetic
moment of elemental solids and the transition metals (i.e., d-
block elements). It is noteworthy that the estimation of MI
involves assessing the probability-density distribution and
marginal distributions of the two variables of interest.
However, estimations of these distributions become increas-
ingly challenging in higher-dimensional data, given the limited
number of samples with respect to the number of dimensions.
This limitation often leads to substantial variations in
probability; as a result, the estimated information gain in MI
analysis may suffer from the high-dimensionality nature of the
data set or an inadequate sample density with respect to the
dimension of the feature space. The features identified through
the GBES workflow and statistical analyses were used to
engineer new features via the brute-force method. This process
resulted in an additional 56 features, leading to a total number
of 116 features that formed the preliminary subset of features
for the regression analysis.
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3.1.5. Multicollinearity Reduction, Permutation Analysis,
and Recursive Feature Elimination. In the next phase of the
GBFS workflow, we address multicollinearity reduction within
the data set, assess the permutation importance of the selected
features, and conduct recursive feature elimination to ascertain
the final subset of features that will go forward for Bayesian
optimization of the final predictive ML model.

To mitigate the effects of multicollinearity in the data set,
features with a correlation coefficient of 0.8 or higher were
systematically removed, resulting in a reduced subset of 67
features. The next remediation of multicollinearity effects
involved employing a hierarchical cluster analysis, using
Spearman rank-order correlation with a Ward’s linkage
distance threshold of 1.5 units. This led to the retention of
38 features, as only one feature from each cluster was chosen.
The optimal distance threshold was determined using the
Elbow method with a step-size of 0.5 units. The corresponding
dendrogram in Figure 7 (a) depicts the hierarchical
agglomerative clustering of features with respect to Ward’s
linkage distance, whereby clusters form as one ascends the
dendrogram, while the results of the 10-fold permutation
feature-importance analysis are shown in Figure 7 (b).

Permutation feature importance is quantified as the
reduction in a model performance when a single feature used
in the construction of the model is randomly shuffled. This
process disrupts the association between the feature and the
target, making the reduction in model performance indicative
of the reliance of the model on that particular feature. The 10-
fold feature permutation analysis suggests that the most
important feature is the mean ground-state magnetic moment
of elemental solids for atoms within a given chemical
composition, as estimated using Magpie data, followed by
the presence of cobalt in the chemical composition and the
mean d-valence electrons. These results are consistent with the
scientific findings of the statistical analyses that were
conducted independently.

The optimal subset of the remaining features was
determined by eliminating further features through 10-fold
recursive feature elimination, employing negative RMSE values

https://doi.org/10.1021/acs.jcim.4c00947
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Figure 10. Results based on the SHAP framework: (a) the average contribution (i.e., the mean absolute SHAP value) of the ten features that are
identified as having the greatest contributions to the model output. A positive SHAP value indicates a positive contribution to the regression of T..
(b) The beeswarm plot illustrates the impact of these features on the model output by plotting each instance as a single data point together with the
SHAP value on the x-axis, where the y-axis is consistent with (a). The color scheme corresponds to the original feature value and the broadening

shows the density of instances (cf. density plot).

as the performance metric; see Figure 7 (c) for the results. This
process led to the identification of the final subset of 36
features. It is helpful to remember that these short-listed
features have been chosen from an initial pool of ca. 800
original features as well as 56 engineered features (cf. Section
3.1.4), which demonstrates their highest relevance to the target
variable without any prior knowledge of the scientific domain.
3.1.6. Model Optimization and SHAP Analysis. A two-step
optimization process was followed to determine the
architecture of the final regression model. The hyper-
parameters of the model were optimized using a combination
of grid search and Bayesian optimization using Gaussian
processes. An initial hyperparameter tuning process was
performed by scanning the hyperparameter space using the
grid-search method. This subsequently identified the region in
which Bayesian optimization was to be applied. Such an
optimization strategy proves to be particularly effective for an
objective function: (i) that has no closed form; (ii) that is
expensive to evaluate; and (iii) whose evaluations yield noisy
responses. The partial dependence and evaluation plots derived
from the Bayesian optimization results are presented in Figure
8, while the total loss reduction (i.e., the feature-relevance
ranking) that was realized by the top 20 features in the
Bayesian-optimized model is illustrated in Figure 9.
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An independent feature analysis was conducted using the
SHapley Additive exPlanations (SHAP) framework,>” which is
a game theoretic approach to explain the output of an ML
model. Figure 10 (a) displays the plot of average contributions
(i.e., the mean absolute SHAP value) of the ten features that
have been identified as having the most significant contribu-
tions to the model output. The accompanying beeswarm plot
in Figure 10 (b) illustrates the impact of these features on the
model output by plotting each instance as a single data point
together with the SHAP value on the x-axis. These findings
align with the features that were identified by the GBFS
workflow (see Figure 9), providing additional validation for the
effectiveness of our modeling approach. Once again, we
observe that the mean ground-state magnetic moment of
elemental solids for atoms within a given chemical
composition, the presence of cobalt, the mean d-valence
electrons, and the mean volume of elemental solid, are among
those identified as having the most significant contributions to
the model prediction of T, values. A substantial overlap is
evident between the two sets of results.

3.2. Blind Test. The results discussed thus far present
predictions of T, values against literature values (cf. Figure 3),
with promising statistical figures-of-merit. Nonetheless, it is
important to validate these results by considering how these

https://doi.org/10.1021/acs.jcim.4c00947
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Table 2. Examples of Chemical Composition (Model Input) and the Corresponding Prediction of T, Values (Model Output),
along with the Percentage Difference from the Mean Experimental T, Values (Ground Truth)?

Experimental T, (K) % diff. from
Chemical composition Pred. T. (K)

n Min Max Mean mean
PrSmCo;r 1 1200 1200 1200 1132 _
Feq.5CoAlp 5 1 1166 1166 1166 944 -19.0
Gd2ZrCosg 1 1165 1165 1165 1066
ProCoqr 2 1157 1158 1158 1178
YSmZrg.¢Co16.4 1 1133 1133 1133 1084
Y2Zro.6Co16.4 1 1118 1118 1118 1101
ErsFesCoys 3 1000 1200 1115 1088
FeCos Al 5Si0 5 2 1110 1114 1112 1092
CeSmZrg.6Co16.4 1 1108 1108 1108 1087
Sm2Cr; 2Coi2.8 1 1093 1093 1093 854
YTiCo11 3 750 1500 1060 994
Y2ZrCoig 1 1050 1050 1050 1017
LaMng.7Co12.3 1 1050 1050 1050 1094
LasTag.5Co16.5 1 1032 1032 1032 1013
Sm2Co14B 3 1025 1029 1027 1001
LasMnzCoiq 1 1010 1010 1010 751
ProCo14B 9 955 994 984 1025
FexCoGa 1 980 980 980 1121
Feg.sGag.2 5 920 1013 961 770 -19.8
LaxCo14B 2 955 960 958 979
Lip.33Cdo.28Fe2.25S510.08904 1 943 943 943 735
Ce2Co16Ga 2 930 950 940 967
Cug.94Pr2ZrCoys.1 1 934.7 934.7 934.7 874
Yo0.31Ndo.47Hfg.11Cos.33 2 786.3 1059 922.7 981
Prg.gZrp.2Cos 1 915 915 915 891
LaxTiCoig 2 914 914 914 906
DyFeg.5Ges.5 1 910 910 910 865
Gd2Cri.76Co15.24 1 905 905 905 929
Cuo.2Mng.g2Fe1.9Nig.sO4 1 900 900 900 724 -19.5
YMog.5Feg.2Co2.3N 1 879 879 879 739 -15.9
NdCos 7 620 915 868 871
Ndi.2Gdg.gFe190CosB 1 852 852 852 822
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Table 2. continued

Experimental T, (K) % diff. from
Chemical composition Pred. T. (K)

n Min Max Mean mean
PrGdFe;oCosB 1 848 848 848 822
HoTiFesCog 2 810 883 847 842
Y1.5Nd; 5Tii.3Fe2;.7Cog 1 840 840 840 666
FesSi 6 803 860 835 809
PrTip.62V1.14Feq.82C03.41 1 829 829 829 762
Smg.78Co4.44Ga 1 827.4 827.4 827.4 721 -12.9
Smg.5Erg.5 TiFegCog 1 823 823 823 772
MnCosSn 10 767 860 818 727 -11.1
Bag.oCeo.1 Fe1aO10 1 811 811 811 684 -15.6
Ceg.8Zrp.2Co5 1 809 809 809 849
GdFe> 15 770 895 804 766
GdV2Fe;oN 1 795 795 795 737
MnFeCoGe 2 711 850 781 595
Y2FegCogB 10 428 923 779 880
Cug.5FeaNig 504 3 770 787 778 688
LasFe;CorB 1 775 775 775 783
GdNbg.e5Fe11.35N 3 773 773 773 737
Feg.33Ru0.335i0.34 1 770 770 770 623
NdGdFe;7Na g 1 768 768 768 734
YVaFei;oN 1 767 767 767 692
Nd3Tii.3Fei6.62Co11.08 3 699 876 758 879
Pr3Ti; 5sNbo 75Fe16.5Cos.25 1 753 753 753 726
Smg.7NbFeys 6N 1 753 753 753 692
FezGe 3 740 755 750 695
NdzFe;Co7B 27 443 973 749 858
SmyVFe16N2 2 1 745 745 745 713
SmoFe13C02Si2N2 3 1 742 742 742 648
GdTiFe;1 N 2 733 745 739 727
Nd2Fe17N3 6 725 743 737 738
MnCozGag.55n0.5 2 700 770 735 736
Pr3Ti; 5Fei3.75Co11Gaz.75 1 733 733 733 722
Cro.25Feq.25 CoAlp 5 2 624 840 732 717
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Table 2. continued

Experimental T, (K) % diff. from
Chemical composition Pred. T. (K)
n Min Max Mean mean
PraFei1.6Co2Alg 4B 2 680 780 730 700
SmsyCraFeq1CoysCo 2 678 781 730 678
Cep.gSmi oFe17Na 7 1 726 726 726 782
GdFes 1 725 725 725 662
Nd2Nbg 5Fe;;.5Co2B 1 724 724 724 680
Bag.g5Mgo.5Zng.5 Gdo.o5Fe16 CoO27 1 722 722 722 733
Ceo.1Prg.3Nd; ¢Fei1.88C02Sig.12B 1 718 718 718 720
GdsMoy sFesr 5N4 1 718 718 718 709
Bag.g5Mgo.5Zng.5Cep.o5Fe16 CoO27 1 718 718 718 678
Ceg.1Prp.3Nd; ¢Fe12Co2B 3 715 715 715 725
ErNbg.¢5Fe11.35N 2 715 715 715 733
YRei.2Fes.4Cos.4 1 715 715 715 780
TmTag.7Fe11.3C 1 714 714 714 694
TbTiFe;1Co.g 1 714 714 714 683
TbNbg.e5Fe11.35C 2 713 713 713 701
Ndi.9Tbg.1Rep.1Fe11.9Co2B 1 712 712 712 713
Nd2.55Vo.26Fe10.34Co2.55B1.30 1 712 712 712 638 -10.5
HosFei17N3 3 709 710 710 708
Cep.1Prp.3Nd1 . ¢Feq1.85Co2Alg.15B 1 710 710 710 706
Cep.1Pro.3Nd;.6Wop.12Fei1.88Co2B 1 707 707 707 715
LuNbg.¢5Fe11.35N 2 705 705 705 679
SmsMo; sFea7 5Ny 1 704 704 704 717
YoFei17N2 5 7 690 740 704 662
Nd2Reg.2Feq1.8Co2B 3 698 705 703 669
Tb3Tii.3Fess.16Co05.54 1 703 703 703 660
Lio.25Y0.1Fe2.15C00.504 1 700 700 700 763

“The results are sorted by the magnitude of mean T, values in descending order, where 7 is the number of experimental values sampled for each
chemical composition; min and max represent their range; mean is their corresponding descriptive statistic. The absolute percentage differences
between the predicted values and the experimental measurements are color-coded in green (0—10%), amber (10—20%), or red (>20%).

predictions fare across a diverse range of chemical materials
rather than simply demonstrating their collective statistical
quality in an anonymized form. Therefore, a comparative
analysis was conducted against Data set 2, i.e., experimental
measurements from the inorganic materials database, Atom-
Work, which contains ca. 16,000 chemical compositions with
T, values, of which ca. 6,600 are unique compositions. We
applied our ML model to chemical compositions that were
previously unseen by the model. The predictions of T, values

were subsequently compared against the experimental

measurements, with 90 examples being summarized in Table
2. These examples were randomly chosen from instances
where the predicted T, value exceeded room temperature;
more specifically, when T, 2 600 K. This selection criterion is
important, as materials exhibiting such T, values are capable of
maintaining thermally stable magnetic states or magnetization
for functional applications.

The aforementioned tendency of our model to under-
estimate experimental T values is apparent, with 64 out of 90
chemical compositions exhibiting a negative percentage
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Figure 11. ML-based predictions of T, values for unseen (a)—(c) RX, and (d)—(f) R-Fe-based chemical compounds (black diamonds) against
median experimental measurements that were obtained from T, values in the literature (gray circles). The bar chart illustrates the residuals (orange
bars), defined as the absolute discrepancies between the predicted values and the experimental measurements. Data from refs 1 and 60.

difference from the mean T, values. This underestimation
becomes more evident at higher T, values, as is depicted by the
line of best fit shown in Figure 3 (a). We attribute this
anomalous pattern to the scarcity of data related to
ferromagnetic materials with high T, values within the training
set, making it challenging for ML models to learn effectively
within this temperature range. We anticipate that the
availability of a greater number of data points in these
temperature ranges would enhance the efficacy of our ML
models.

Notwithstanding this modest negative bias in our ML model,
it predicts T, values well on an absolute scale. Thereby, the
average absolute percentage difference from the mean is ca.
6.7%. Some of the lowest absolute percentage differences were
observed for chemical compounds such as MnCo,Ga,Sny s,
Nd, ¢Tb, Re, Fe;; 9Co,B, and Nd,Fe ;N;. Meanwhile, some
of the highest absolute percentage differences were noted for
chemical compounds such as La,Mn;Co,,, MnFeCoGe,
Lig33Cdg2gFe; 2551008904 and Sm,Cr;,Co;, 4, whose absolute
percentage differences from the mean exceeds 20%. The
absolute percentage difference of each predicted T, value from

6404

its experimental measurement is color-coded according to the
classifications: green (0—10%), amber (10—20%) or red
(>20%). We observe that materials rich in cobalt and iron
exhibit the highest T, values. Among the 90 examples
summarized in Table 2, iron and cobalt are present in the
composition over 60 times. Other noteworthy chemical
compositions include the elements, neodymium, samarium
and manganese. The majority of the chemical compositions
involve a combination of these chemical elements, as well as
their oxide forms.

3.3. Predictive Capabilities for ML-Model Applica-
tions: Two Case Studies. We now explore potential
applications of our ML models beyond benchmarking against
state-of-the-art reports. Specifically, we aim to (i) predict Curie
temperatures of rare-earth intermetallic compounds, and (ii)
generate magnetic phase diagrams of chemical compounds,
particularly those in a binary system, where T, values are
computed as a function of elemental composition. We assess
how well the models perform when given the task to make out-
of-distribution predictions. Here, out-of-distribution predic-
tions are defined as model predictions that are made within a

https://doi.org/10.1021/acs.jcim.4c00947
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Figure 12. ML-generated magnetic phase diagrams - prediction of T, as a function of elemental composition for (a) Mn—Co, (b) Pt—Ni, (c) Co—
Fe, and (d) Ni—Fe binary systems. The results are compared against seen (diamonds) and unseen (circles and triangles) experimental
measurements of T, values from the literature. The shaded blue region in (a) depicts the approximate phase transition between the ferromagnetic
and antiferromagnetic (AF) phases. The two types of unseen experimental measurements in (d) represent the two different Curie temperature
profiles in the Ni—Fe binary system. Data from refs 27, 30, and 60—66.

chemical space that is either under-represented or not
represented by the data in the training set. Therefore, we are
challenging our ML model to explore unfamiliar material
spaces by extrapolating from patterns which pertain to
chemical-property relationships that they have learned during
the model training stage. This exploration will provide a clearer
understanding of the predictive capabilities and suitability of
our model for more practical applications.

Figure 11 depicts the predicted T, values (as black
diamonds) of rare-earth intermetallic compounds against
experimental measurements (i.e,, the ground truth which is
given as gray circles). Figures 11 (a) to (c) refer to unseen RX,
compounds (X = Fe, Co, Ni), where R represents a rare-earth
element, while Figures 11 (d) to (f) correspond to more
intricate R-Fe-based intermetallic compounds. The x-axis in
each graph illustrates the chemical composition and the
specific rare-earth elements considered in the prediction, with
the ground truth being derived from refs 1 and 60. We
emphasize that this prediction exercise extends the blind test,
whereby model predictions are benchmarked against well-
established data on known rare-earth-based compounds.
Although these compositions are unseen by the model, they
are familiar to the scientific community; therefore, this exercise
is not about discovering new materials but rather about
validating the predictive accuracy of our model.

Figure 11 shows that the majority of the T, predictions made
by our ML model for these unseen chemical compounds align
well with the experimental measurements. However, a few
notable deviations are evident. For instance, the predicted
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magnetic ordering temperature for NdFe, is ca. 568 K, while
the median experimental measurement is 453 K, as evidenced
by the large discrepancy shown in Figure 11 (a). A closer
inspection of the data set reveals that there are three
independently measured experimental T, values for this
particular compound, which are quite disparate to each
other: (i) 328 K, (ii) 453 K, and (iii) 578 K. Considering
this, our prediction appears reasonable.

Furthermore, Figure 11 displays the results in order of
ascending rare-earth atomic number. This revealed a
discernible trend in these rare-earth intermetallic compounds:
the incorporation of Gadolinium (Gd) into the chemical
composition yields the highest T, values in all cases. This
pattern is evidenced by the prediction of our model, which
aligns with experimental data, demonstrating a clear peak when
R is Gd for the chemical material classes considered herein.
This trend stands to reason given that Gd lies in the middle of
the lanthanide series, whose elements are mostly stable in their
R*" electronic configuration. Thereby, the electronic config-
uration of Gd* ions is [Xe]4f’, 5d°, 65°, i.e., all its f orbitals
carry an unpaired electron which will maximize its magnetic
moment. The peak T, value for Gd will fall off fairly
symmetrically as a function of an increasing or decreasing
atomic number for R from that of Gd, since the number of
unpaired electrons will decrease as the rare-earths extend to the
lower and upper ends of the lanthanide series.

Figure 12 illustrates the ML-generated phase diagrams for
(a) manganese—cobalt (Mn—Co), (b) platinum—nickel (Pt—
Ni), (c) cobalt—iron (Co—Fe), and (d) nickel—iron (Ni—Fe)
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binary systems; i.e., the prediction of T, values as a function of
an elemental composition for a given class of materials, with
the ground truth being derived from refs 27, 30, and 61—66.
The black line represents the ML predictions. Experimental
measurements, unseen during the training of our ML model,
are depicted by red circles and orange triangles, while those
seen by the models are represented by blue diamonds.
Specifically, the ML model was trained on a comprehensive
range of chemical compositions that is available in the data set.
However, compositions related to the given binary systems
were excluded from the training set, with the exception of
those represented by the blue diamonds. These exceptions
indicate specific compositions within these binary systems that
were intentionally included during the training phase. This
methodological choice was adopted to demonstrate the
model’s capability to make accurate out-of-distribution
predictions, even with minimal or no data on the particular
binary system under examination. Overall, we observe a strong
correspondence between the predictions and the experimental
measurements. The models demonstrate their ability to
generate out-of-distribution predictions with a high level of
accuracy. Figure 12 (d) further showcases the model’s
proficiency in generating accurate out-of-distribution predic-
tions, even in the presence of a transition between two phases
in the Ni—Fe system, as indicated by the unseen experimental
measurements marked in circles and triangles.

We now turn our attention to specific details within certain
magnetic phase diagrams. The Mn—Co system has undergone
extensive review by Ishida et al.®’ and Men’shikov et al.’”
Those studies elucidated the formation of disordered alloys
and their crystal structures across a range of chemical
compositions. The magnetic phase diagram of the Mn—Co
binary system referred to in Figure 12 (a) encompasses regions
of ferromagnetic and antiferromagnetic long-range order, along
with superparamagnetic and superantiferromagnetic states.
The latter states involve mixtures of ferromagnetic and
antiferromagnetic clusters with the paramagnetic phase,
respectively. Detailed magnetic phase diagrams can be referred
to in the cited studies. Our discussion primarily focuses on the
ferromagnetic state (from 0 to ca. 25—-30 at % Mn) and
neglects the antiferromagnetic state (above ca. 35 at % Mn)
and the mixture states (in between the ferromagnetic and
antiferromagnetic states), since the scope of this study is on
ferromagnetic materials; besides, the experimental points for
the mixture states are acknowledged to be less accurate, despite
their established existence.

The profile of the magnetic ordering temperature of the
Mn—Co system is known to monotonically decrease as a
function of the Mn content from 0 to 30 at % Mn, before
monotonically increasing above ca. 35 at % Mn. Our ML-
generated magnetic phase diagram effectively reproduces these
experimentally observed patterns, even though our model was
trained exclusively on chemical composition-based features,
with only elemental Co being seen by the model among the
experimental data that pertains to this binary system.
Surprisingly, the inversion point at the critical temperature at
ca. 35 at % Mn is captured, despite corresponding to the
antiferromagnetic region. The mean magnetic moment (ir)
within the ferromagnetic states decreases with an increase in

. . . . di
Mn concentration relative to Co concentration (1.e., d—ﬂ < 0).
CMn

This signifies that in the Mn—Co alloy system, ;i diminishes
due to the antiferromagnetic positioning of Mn atoms in
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relation to Co atoms. Specifically, the local magnetic moment
(u) of Mn atoms ranges from ca. 25 pg to 29 uy within the
concentration range of 0 to ca. 20 at % Mn. The value of fi
continues to decrease beyond ca. 20 at % Mn due to a
reduction in y of Co atoms, whose values are influenced by Mn
atoms through exchange interactions. The proportion of
ferromagnetically interacting Co—Co pairs decreases until it
reaches zero at a concentration of ca. 27 at % Mn, while the
proportion of antiferromagnetically interacting Mn—Co and
Mn—Mn pairs increases with a higher concentration of Mn.
Therefore, the Mn—Co alloy system can be characterized as a
typical Ising magnet, with antiferromagnetic interactions
prevailing above a concentration of about 27 at % Mn. This
observation aligns with the results obtained from our GBFS
workflow, where the most important feature is identified as the
mean magnetic moment of elemental solids for atoms within a
given chemical composition, as one might expect.

Another magnetic phase diagram that warrants detailed
discussion is the Ni—Fe alloy system (cf. Figure 12 (d)). In
contrast to the Mn—Co alloy, the Ni—Fe alloy exhibits
ferromagnetic states throughout its entire compositional range.
The equilibrium phases of the Ni—Fe system encompass the:
(i) liquid phase, (ii) body-centered cubic, high-temperature
(8Fe) solid solution, (iii) face-centered cubic (yFe,Ni) solid
solution, (iv) body-centered cubic, low-temperature (aFe)
solid solution, and (v) intermetallic compound of the form
FeNi;.”*~°® Our primary focus is on examining the T, profile of
the Ni—Fe alloy system associated with the Fe-rich (aFe) solid
solution and (yFe,Ni) solid solution, as well as exploring the
change in the T, profile that corresponds to the two
intermetallic phases.

Determining the phase boundaries in magnetic materials is
challenging and their identification generally necessitates the
use of advanced experimental materials-characterization
methods such as powder X-ray diffraction and scanning
transmission electron microscopy. Our ML-based magnetic
phase diagram shown in Figure 12 (d) depicts a decreasing
trend in T, values as the Ni concentration increases from 0 to
ca. 35 at % Ni. Beyond this point, an increasing trend is
observed, closely following the experimental measurements
with a peak T, of ca. 885 K at ca. 67 at % Ni, while the ML
prediction shows a peak T, of ca. 830 K at ca. 76 at % Ni.
Further increases in Ni concentration lead to a subsequent
decline in the T, value until a concentration of 100 at % Ni has
been reached. It should be noted that an additional
ferromagnetic phase involving the FeNi; intermetallic com-
pound is reported in the literature within the Ni concentration
range of approximately 60 to 85 at % Ni. However, the
magnetic ordering temperature of FeNi; is not considered in
this analysis, so we would not expect our ML model to identify
such a phase. Our T, predictions otherwise agree well with the
experimentally determined magnetic phase diagram for Ni—Fe
binary system that was produced by Swartzendruber et al.**

We note that our model for the Ni—Fe binary system
successfully interpolates the chemical relationships derived
from the training to make accurate out-of-distribution
predictions, despite having encountered only two experimental
measurements among those in this binary system during the
training process; albeit, the training process is helped by the
fact that these two experimental values lie at either end of the
limiting compositional range of this binary system such that
they give the model anchoring points with high statistical
leverage. Our model identifies both the minimum and
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maximum T, values, in addition to mirroring the experimental
delineation of the T, profiles corresponding to (aFe) and
(yFeNi). Such predictions were not anticipated without
structural information, especially considering the scarcity of
experimental data points seen by the model across this
compositional range. However, as discussed earlier, the mean
magnetic moment of elemental solids appears to have played a
crucial role in facilitating this prediction. In the ferromagnetic
Ni—Fe system, 7 measured in the (aFe) phase ranges from
2.00 pig to 2.29 pg, while in the (yFe,Ni) phase, it ranges from
0.61 pp to 1.93 pp®* This indicates a clear distinction in the
range of ;i values between the two phases, from which the ML
model appears to have extracted the information that is
necessary to distinguish between the two intermetallic T,
phases. The utilization of magnetic measurements for the
study of two-phase Fe—Ni alloys is described by Sucksmith et
al.77% Lastly, it is crucial to acknowledge uncertainties
associated with the examination of (aFe)/(yFe,Ni) phase
boundaries. The transformation between these two phases can
be influenced by the presence of material impurities.
Additionally, environmental conditions during the varying
experimental measurement processes will play an important
role. For instance, applied pressure has been shown to lower
the transformation temperature between the two phases (i.e.,
(yFeNi) — (aFe)).®*®” Therefore, discrepancies are expected
among the experimental measurements reported in the
literature.

4. CONCLUSIONS

This study has employed a machine-learning-based workflow
for feature selection and statistical analysis to train predictive
models for the Curie temperature (T.). Our feature-selection
workflow integrates a distributed gradient boosting framework
along with exploratory data and statistical analyses, as well as
multicollinearity treatments. This pipeline identifies and selects
a subset of features that are highly relevant to the target
variable or class within a complex feature space, ensuring
minimal feature redundancy and maximal relevance to the
target variable or classes. Subsequently, gradient boosting trees
are trained with the selected features, which are derived solely
from the chemical composition of a material.

In an analysis involving ca. 11,000 chemical compounds with
ca. 6,200 unique chemical compositions, our Bayesian-
optimized regression model that predicts T, values achieved
an R? of 0.93, an MAE of 38.8 K, and an RMSE of 72.2 K on a
test set that was obtained via random splitting. A 10-fold cross-
validation of this model yielded an R* of (0.92 + 0.01), an
MAE of (40.8 + 1.9) K, and an RMSE of (80.0 + 5.0) K.
These results are superior to those of complex algorithms
reported in the literature that predict T values, some of which
use intricate feature descriptors. This demonstrates the efficacy
of our modeling approach and emphasizes the importance of
thorough feature analysis and judicious selection over merely
complex modeling. Additionally, a blind test was conducted on
chemical compositions with T, values sourced from AtomWork
(Data set 2), which were not included in the initial training set
(from Data set 1). An analysis of a randomly selected subset of
this data set, comprising 90 chemical compounds whose T, 2
600 K, revealed that materials abundant in cobalt and iron
exhibited the highest T, values. Notable chemical compositions
also included the elements, neodymium, samarium, and
manganese. The majority of the chemical compositions
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involved a combination of these chemical elements, as well
as their oxide forms.

Finally, we investigated applications of our ML models
beyond benchmarking against state-of-the-art reports. This
exploration involved: (i) predicting T, values of rare-earth
intermetallic compounds and (ii) generating magnetic phase
diagrams of chemical compounds within a binary system.
These findings illustrate that our ML models possess the ability
to make accurate out-of-distribution predictions by extrapolat-
ing the chemical-property relationships learned from the
materials database.

Bl DATA AND SOFTWARE AVAILABILITY

We have made available the data and the code for the feature
selection, statistical analyses, multicollinearity reduction,
recursive feature elimination and Bayesian optimization at
https://github.com/Songyosk/CurieML.
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